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Abstract

We review some of the properties of the vortex lattice in type II superconductors and the use of muon spin
rotation (uSR) to investigate high temperature superconducting oxides. As a microscopic probe of the field
distribution inside the bulk of materials, uSR is shown to be a powerful tool with which to study the mag-
netic properties of superconductors. We also discuss how understanding the complex phenomenology of the
vortex lattice in these materials is necessary in order to correctly determine fundamental parameters of the
superconducting state.



1 Introduction

Muon spin rotation (uSR) is a unique tool with which to investigate the magnetic properties of superconductors.
This is because the muon acts as a microscopic probe of the field distribution within the bulk of the sample.
In the mixed state of type II superconductors the applied magnetic field penetrates the sample in the form of
vortices of superconducting electrons, each of which carries one quantum of magnetic flux ¢g = h/2e, where h
is Planck’s constant and e is the charge of an electron. In conventional superconductors these are line vortices,
or flur lines, but in high-temperature superconductors (HTSC) they may adopt more exotic forms. It is the
arrangement of these vortices which give rise to the distribution of magnetic fields in the sample. In HTSC,
the unconventional vortex arrangments may lead to interesting phenomena such as the vortex-glass and the
vortex-liquid state. The understanding of the properties of the flux line lattice are of importance to possible
applications of superconductors. In the mixed state the passage of a current through the bulk of the sample
will exert a Lorentz force on the flux vortices, and the resulting motion will lead to a dissipation of energy and
hence loss of perfect conductivity. This motion is hindered by the presence of material defects, which act as
pinning sites. Above a certain critical current the force exerted on the vortices is sufficient for them to break
free and for flux flow to occur. Applications of HTSC are mainly hindered by their relatively poor critical
currents, which are due to low pinning strengths in these samples. By performing uSR studies on HTSC we
can, however, gain insights into the pinning mechanisms and strengths in these materials, and how they could
be improved. The study of the behaviour of vortices also yields fundamental parameters of a superconducting
system, such as the penetration depth and the coherence length. From systematic studies of these parameters,
insight can be gained about the pairing mechanism and symmetry of the system, which is still an open question
for the HTSC copper oxides.

We now give a short synopsis of our review: Although the basic principles of SR have already been discussed
by E. Roduner in this volume [1], in Section 2 we will address some special questions regarding ©SR important
to our data analysis. We then go on in Section 3 to present some considerations on the nature of type II
superconductors and some basic properties of anisotropic flux line lattices, which are especially important in
the discussion of HT'SC. In this context we will also show how the spatial distribution of the magnetic field
yields the field probability distribution, which is the quantity measured in uSR. We also discuss the effects that
different types of disorder have on the field distribution. Some experimental limitations are discussed which
relate to the study of samples having very long penetration depths or anisotropies, after which we review some
of the novel transitions in highly anisotropic HT'SC. Due to the importance of the pinning strength in HT'SC to
applications, in Section 4 we will present a short treatment of this topic, and some related pSR measurements.

2 Principles of uSR

For the basic principles of SR we refer to the introductory article by E. Roduner [1], where it is shown that
in a transverse field experiment, the muon spin polarisation can be measured from the asymmetry of the uSR
signal. Monitoring the positron decay distribution as a function of time, one can therefore observe the time
dependence of the muon polarisation vector. If the muons are distributed randomly over the sample cross-section
interesecting the beam, the time dependence of the polarisation vector is just given by the Larmor precession
of the muon in the local field at the muon site. From this one is then able to show that, in transverse geometry,

F(Pr0) = Zp (-2 1)

where F denotes the Fourier transformation, p(B) is the field probability distribution (p(B’) := (§(B(7) — B’)))
and v, is the gyromagnetic ratio of the muon. The fourier transform of the muon spin polarisation is thus a
direct measure of the field probability distribution. Since the asymmetry of the uSR signal measures this spin
polarisation, we are able to probe directly the field distribution in the sample by Fourier transform pSR. In
practice, conventional Fourier transform methods exhibit several problems. Significant noise in the time signal
at long times, due to finite count rates, is distributed over the whole of frequency space. Furthermore, only a
finite time window is available to the experiment, leading to further aberrations in the frequency spectra. While
the effects of these may be minimised by suitable data treatment, we apply an alternative technique based on a
maximum entropy algorithm [2]. This leads to significant improvements in the quality of the Fourier transforms.
In the algorithm used we maximise S — A\x?, where S is the information entropy and A a Lagrange multiplier
[2]. This leads to the most uniform frequency distribution consistent with the time spectrum, and no prior
assumptions on the form of the distribution are needed. In the investigation of superconductors the Fourier



transformed pSR approach is especially fruitful, since the field probability distribution does not have a simple
analytic form, which could be included in a time-domain fit. This use of the maximum entropy technique in
Fourier transform pSR thus allows us to investigate various properties of the vortex lattice directly, since the
field probability distribution p(B) is closely related to the spatial distribution of flux lines B(r). We will now
discuss some properties of vortex lattices and their effects on B(r) and hence on p(B).

3 Field distributions of vortex lattices

The electronic and magnetic properties of type I superconductors are described by the phenomenological theory
developed by H. and F. London. On the basis of a macroscopic order parameter for the whole sample they
proposed two equations which could describe perfect conductivity (cf. equation 2) and diamagnetic screening
(cf. equation 3).
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where \ = /Mofgns is called the London penetration depth, with m, being the mass, e; the charge and ng
the density of the superconducting carriers. The perfect diamagnetic screening, also called Meissner effect,
is the main magnetic property of type I superconductors. In type II superconductors, however, the spatial
variation of the order parameter, neglected in the London theory, has to be taken into account. This requires
the more elaborate Ginzburg-Landau theory, capable of describing flux lines. The existence of flux lines can
be justified by considering the phase boundary energy between the superconducting and the normal state in
an external field. For type II superconductors, it is energetically favorable for the magnetic field to penetrate
into the superconductor above a certain critical field poH., = %ln% in the form of flux lines, each carrying
one quantum of flux. The flux line consists of a vortex of supercurrents surrounding a core of normal (non-
superconducting) electrons. Due to interaction of the supercurrents which make up the flux lines, the vortices
repel one another and hence form a regular hexagonal lattice. When the density of flux lines is high enough

for their normal cores to overlap, superconductivity is destroyed. This happens above the upper critical field

toHc, = %. The distinction between the two types of superconductors may be drawn by means of the
Ginzburg Landau parameter k = %, where ¢ is the coherence length, representing the scale of spatial variation

of the order parameter. If k < 1/4/2 the superconductor is said to be of type I, whereas for £ > 1/v/2 it is of
type II. For extreme type II superconductors, with x > 1, the description is relatively simple when compared
with the full Ginzburg-Landau picture. This condition is well satisfied in HTSC, and the cores of the flux lines
(of radius &) can effectively be taken to be of zero extent. Therefore the field distribution of a single flux line
can be described by an extended London equation:
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This equation has the well known solution

B = g (75 2

where Ko is the modified Hankel function of order zero [3]. From basic considerations, we can then get the
energy density of the vortex line to be:
32 A
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The quadratic dependence of the energy on the flux quantum tells us that the flux line will contain only one

quantum of flux. At intermediate fields B,., < Byt < Be, the field variation B(7) of the flux line lattice will
be periodic. It can therefore be expressed as a Fourier series:

B(7) = (B) ) _ by exp(ikr), (7)
k




where (B) is the mean field within the superconductor. Introducing this as a solution into the modified London
equation (Eq.( 4)) one gets a solution for the Fourier components b;: as
B 1
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Thus the field distribution of a vortex lattice in the London limit is given by

exp(ik7)

B(F) = <B>Zm,

E

(8)

where k are reciprocal vectors for a triangular lattice. As discussed above, however, the result of a puSR
experiment is not the spatial field distribution B(r), but the field probability distribution p(B). For this reason
we shall now consider the derivation of p(B) from B(r) for a vortex lattice. As already stated in Section 2,the
field probability distribution is given by p(B’) := (§(B(F) — B’)). For practical purposes however, it is more

convenient to rewrite this as .
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where the integration is carried out over lines of constant field B(x,y) = B’. This is the same procedure as a
density of states calculation, but is carried out in two dimensions. At critical points (minima, maxima and saddle
points) of the spatial field distributions, van Hove singularities thus occur. For a periodic field distribution,
p(B) vanishes outside the region By, < B < Bpaz. At these minimum and maximum fields, the probability
distribution exhibits jumps, while at saddle point fields By,q a logarithmic divergence of p(B) occurs. It can
also be seen that due to the existence, close to the normal cores, of fields higher than the applied, the maximum
field is much higher than the mean field. This leads to a highly asymmetric field probability distribution, which
is shown schematically in fig 1.

Usually the second moment of the field distribution is extracted from puSR experiments by fitting a Gaussian
relaxation function to the time signal. If it is assumed that the probability distribution is Gaussian, then the
variance of the Gaussian o is related to the second moment of the field distribution (AB?) by o = 7, (AB2)1/2,
The latter is a direct measure of the penetration depth of the superconductor, which may be shown by deriving
an expression for (AB?) using the spatial distribution B, (r) derived earlier, yielding

apy -y (10)
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In the limit A|k| >> 1, evaluation of the sum over all of the reciprocal lattice vectors for an hexagonal lattice
gives (AB?) = 0.00371®3/A* [5]. Refering to fig 1, however, it is clear that the field distribution is in general
by no means Gaussian, raising doubts as to the validity of this approach. In polycrystalline samples of HT'SC
the lineshapes are often in fact roughly Gaussian, due to the effects of averaging over orientations of differing
demagnetisation factors [6]. A study of powder samples in ref. [7] showed that experimentally o and (AB2)/2
are proportional, so for studying systematic trends o provides a good relative measure of the penetration depth
[8] (this volume). For an absolute determination of A, however, the actual second moment of the field distribution
should be determined from the Fourier transform of the ySR time signal. For linewidths determined in this
way there is a strong dependence on the statistics taken during the measurement. The very long tail in p(B)
at high fields becomes more significant relative to the noise with increasing statistics, hence the measured value
of (AB?) grows. As pointed out by Sidorenko et al. [9], in measurements on single crystals, the penetration
depth can also be extracted from the value of
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where the mode of the distribution at By,q is independent of statistics and (B) can be measured in magnetisation
measurements. Even taking the value obtained for (B) from the puSR lineshape, the estimate of A is less
susceptible to the influence of statistics than if (AB?) were used, since the distribution only enters linearly
into the calculation. Comparing this with the above expression for (AB2)'/2 for a perfect triangular lattice of
extended vortex lines yields the parameter

B = (Bgaa — (B))/{AB*)'/2 ~ 0.6, (12)



which can be used as a measure of the perfection of the flux lattice in the sample. Due to one or more of the
above arguments the second moment is usually underestimated, so that the experimentally determined 5 > 0.6
for a perfect triangular lattice of rigid vortex lines.

In real vortex systems some degree of disorder will always exist. For instance non-periodic fluctuations of
the internal field will arise from the spatial disorder induced in the lattice by random pinning sites. Distortions
of a flux lattice composed of rigid vortex lines generally leads to a smearing of the field distribution, which
convolutes the ideal-lattice field distribution with that due to the disorder [10]. These distortions are generally
assumed to be of Gaussian form. Taking the most extreme case, for a random distribution of extended vortex
lines, the second moment of the field distribution becomes [11]:
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This linear dependence of (AB?) on B is in strong contrast to case of an ideal lattice, where for intermediate
fields (AB?) is completely field independent. The flux lattice is, however, usually of sufficient order that these
effects need not be taken into account. A case where this is not true will be discussed further in Section 4.
Broadening of the field distributions due to nuclear moments may also occur. Usually this may also be neglected
in superconductors, since the superconducting widths of the spectra (given by the value of the penetration
depth) are approximately an order of magnitude broader than those arising from the nuclear moments. In
superconductors with very long penetration depths, however, such as the organic charge transfer ET salts
[12, 13, 14], the nuclear broadening is of the same order as the superconducting contribution to the linewidth.
In that case the determination of the penetration depth from Eq.(11) is complicated, since the convolution shifts
the peak field considerably. For this reason, in these compounds a reliable analysis requires that the contributions
to the spectra from both the nuclear moments and the instrumental resolution must be deconvoluted from the
measured lineshapes [13].

The above discussion is valid for isotropic superconductors. HTSC, in common with other systems such as
organic superconductors or NbSes, show uniaxially anisotropic behaviour in their superconducting properties.
This anisotropy arises from the highly layered structure of these compounds, yielding different values of the
penetration depth for fields parallel and perpendicular to the superconducting planes. The anisotropy is pa-
rameterised by the ratio of the penetration depths due to currents flowing perpendicular and parallel to the
planes v = A1 /). In single crystals the second moment of the xSR field distribution is a measure of the aver-
age penetration depth perpendicular to the applied field. The second moment will therefore show an angular
dependence, which takes the form

(AB?)(9) = (AB?)(0)(cos*(9) + vy 2sin?(¥9)), (14)

where v is the anisotropy parameter and 9 is the angle between the applied field and the axis perpendicular to
the planes [15, 16, 17, 18]. In systems of moderate anisotropy, such as the HTSC YBayCusO7_s (YBCO), it is
possible to determine the anisotropy parameter. This was carried out by Forgan et al. [15] and is shown in fig.
2, yielding v & 5. The extremely anisotropic HTSC BisSraCaCus0g4s (BSCCO), however, was not found to
obey this relation at all applied fields [18]. Tt seems likely that these discrepancies arise due to the disorder of
the vortices in this quasi-2D system, which is discussed further below. It is worth noting that for polycrystalline
samples of anisotropic materials with v 2 5, the value of the second moment of the field distribution is given
by (AB?) = 0.00371F®2/\} , where F ~ 0.44 [19]. That is, the polycrystalline average is independent of .

For extremely anisotropic superconductors such as the HTSC BisSroCaCusOsgy5 (BSCCO), the vortices are
best described as a stack of quasi two-dimensional (2D) ‘pancake’ vortices, each confined to a superconducting
plane. This opens another degree of freedom for disorder, since in such compounds vortex lines can be disordered
along their length. In contrast to the case of disorder in a system of rigid vortex lines, the width of the uSR line
is now decreased, since there is an effective smearing of the core fields due to the positional fluctuations [20].
This leads to a truncation of the long high field tail in the field distribution and hence to a narrower line. The
nature of this disorder may be static (pinning-induced) or dynamic (thermally-induced). These fluctuations of
the vortex positions can be taken into account in the determination of the width of the SR line, by introducing
a Debye-Waller type of factor into the expression given in Eq.(10), yielding [21, 22]

_k,2 2
(AB?) = ZBQM. (15)
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This is valid for both static and dynamic disorder, so long as the timescale for vortex motion is much greater than

the timescale of the measurement. This is certainly realised in the HTSC, so that it is the time average of the



dynamic fluctuations which may be probed. For the highly anisotropic superconductor BSCCO the temperature
dependence of the second moment has been studied in this respect by Lee et al. [23, 24]. Using theoretical
calculations for the thermal fluctuations appropriate for highly anisotropic superconductors, as given by Blatter
et al. [25], they were able to describe the field and temperature dependence of the second moment of the uSR
lineshapes. In fig. 3 the form of the temperature dependence of the second moment is shown to be a strong
function of applied field. The solid lines are calculations based on Eq.(15), only using parameters obtained
independently, and are in excellent agreement with the data. The theory is even able to describe the anomalous
migration from one curve to another at low fields [24]. It is thus clear that in highly anisotropic superconductors,
the temperature dependence of the second moment of the field distribution does not necessarily reflect only the
temperature dependence of the penetration depth. On the contrary, it may be strongly influenced by thermal
fluctuations of pancake vortices, as in BSCCO.

The observations of the influence of thermal fluctuations discussed above where performed in a region of the
magnetic phase diagram where the vortices essentially form strings of pancakes which resemble vortex lines. At
these low fields the energetic cost of a shear deformation of the vortex lattice, due to the distortion introduced
by the pinning site, is smaller than that of a local tilt of the line. The lattice can thus still be considered as
consisting of extended lines. At higher fields the cost of shear deformations increases, and so local tilting of the
vortex lines becomes more likely. The elastic moduli of the vortex lattice in HT'SC are highly dispersive. At
fields above that at which the dominant wavelength for tilt deformations becomes of the order of the inter-layer
spacing of the superconducting planes s, the lattice may be regarded as crossing over to a more two-dimensional
regime. For a strongly Josephson coupled layered superconductor this occurs at fields above Bap = ®¢/(7s)?
[26, 27]. A similar crossover in behaviour is observed by uSR, where for field-cooled measurements at low
temperature, the second moment is reduced drastically at a crossover field B, [28, 29]. Accompanying this
reduction in width, a change in lineshape is also observed, producing a more symmetric field distribution. This
is attributed to the static distortions induced on this softening lattice by random pins. These smear the fields
associated with the vortex cores, leading to a strong reduction in the maximum field and hence a cut-off of the
high field tail of the field distribution. Small angle neutron scattering (SANS) measurements by Cubitt et al.
[30] concur with this interpretation, where the scattered neutron intensity dramatically drops above the same
applied field.

This has been used by Bernhard et al. [31] to determine the anisotropy parameter for highly over- and
underdoped BSCCO. It has however been shown recently [29], that this picture does not fully apply for su-
perconductors as anisotropic as BSCCO, for which vs > ). In that case at the field Bap the inter-vortex

separation, ag = /®o/B is still bigger than the penetration depth, meaning that the vortices are only very
weakly interacting. Therefore the crossover field is shifted to a value of

Bcr = QO/)‘ﬁv (16)

above which the vortices begin to strongly overlap. This can be seen in fig. 4, where the crossover field as
determined from SR, or magnetisation measurements using the fishtail effect [29, 34], is shown as a function of
the inverse square of the penetration depth. From that figure it can be clearly seen that the relation 16 is well
observed in highly anisotropic superconductors. Similar results are also obtained in the organic superconductors
[13], where the anisotropy is estimated to be of a similar order of magnitude as in BSCCO from magnetic torque
measurements [35]. The determination of 4 from measurements of the crossover field in extremely anisotropic
superconductors does not, therefore, give the correct value, but rather a lower limit. The anisotropy of BSCCO
can, however, be determined from puSR by another method, which we discuss below.

The high anisotropy of the samples results in highly flexible vortex lines. Combined with high transition
temperatures, this results in the large thermal fluctuations discussed above. At sufficiently high temperatures
the vortex lattice can acutally melt. Such a melting transition has been observed by many different techniques,
such as resistivity [36, 37], magnetization [38, 39], specific heat [40], latent heat [41], SANS [30] and SR [28, 24]
in several HTSC compounds, such as YBCO and BSCCO. Recent latent heat measurements on detwinned single
crystallite YBCO [41] give strong evidence for this to be a first order transition. In uSR the melting transition
is observed by a sharp change in the shape of the field distribution, due to the truncation of the high field
tail because of the smearing of the core fields [28, 24]. This change in shape can be seen in fig. 5, where two
lineshapes, above and below the melting transition are shown. The line below the transition has a weighting to
fields higher than the average, whereas above the transition the converse is true. This is shown by a change in
sign of the lineshape asymmetry parameter

o= VBB (17)
(AB?)



The sharpness of the temperature dependence of « suggests the first order nature of the transition. This is
shown in fig. 6, for an applied field of 30 mT. The melting temperature should be field dependent and can be
estimated by a Lindemann criterion (a3 = ¢% (u?)). This gives a melting line in the magnetic phase diagram,
which for instance could take the form

1
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which would allow a determination of the anisotropy parameter v to be made. As in the calculation of Bsp,
this does not take into account the extreme anisotropy of BSCCO. Blatter et al. [25] have recently reevaluated
the determination of the melting line including electromagnetic interactions between pancake vortices in their
calculations. According to this analysis, over large portions of the phase diagram the melting line is independent
of the anisotropy if vs > A (7). This is satisfied up to a characteristic temperature 7" determined by

)\H(Tem) =S (19)

where a crossover in the temperature dependence of the melting line occurs. The form of the melting line then
changes from a (T )\ﬁ(T))_l to a (T/\ﬁ (T))~! behaviour. A similar crossover behaviour was observed in a SR

experiment [24], but with a change from a (T)\ﬁ(T))*1 to a (T)\ﬁ (T))~! dependance. This is predicted for a
simultaneous or closely separated melting and decoupling transition, which is also consistent with interpretations
of data from other techniques such as SANS [30, 42]. The analysis leads to a value of T°" = 70K, and a
corresponding v = 160. In fig. 7 the melting line as determined from pSR is shown together with calculated
curves based on ref. [25]. The Lindemann number ¢; was determined from the low temperature part, whereas
~ was determined from 7°™. For this reason the high temperature part of the melting line has no adjustable
parameters and is in excellent agreement with the experiment. As would be expected, the value of « obtained
in this way disagrees with that obtained by incorrectly identifying the crossover field with Bap = ®q/(vs)?.

Measurements of the temperature dependence of the penetration depth could reveal important information
on the symmetry of the wavefunction of the Cooper pairs. For superconductors with strong coupling s-wave
pairing a temperature dependence close to that of the phenomenological two-fluid model, given by

A%(0)
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(20)
with n = 4, should be observed [7]. For d-wave coupling, however a linear temperature dependence at low
temperature would be expected. The experimental SR results are still somewhat inconclusive on this issue.
For instance, a systematic study of powder samples of YBCO showed that as § was varied the exponent in the
phenomenological equation varied from n & 2 to n ~ 4 with increasing oxygen content [43]. Measurements on
fully oxygenated single crystal YBCO, however, involving a full analysis of the uSR lineshape, gave evidence for
a linear temperature dependence at low temperatures [44, 45]. It is not clear whether in this system the effects
of thermal fluctuations should also be taken into account at high fields, in a manner similar to that discussed
for BSCCO. If present these could certainly have an influence on the apparent temperature dependence of .
In BSCCO the effects of thermal fluctuations are so influential, that the authors doubt whether the dependence
of AM(T') may be sufficiently well determined by pSR to distinguish s-wave from d-wave coupling.

4 Pinning of flux lines

The pinning of flux vortices can arise most commonly from metallurgical defects in the sample at which the
superconductivity is partially or wholly supressed. To be effective, such a pinning site has to extend at least
over a volume of &3, where ¢ is the coherence length, since changes in the order parameter can only take place
over £. The gain in energy by the pinning of a flux line can be estimated as

B e
240 1672192’

Eyin = (21)
where B, = ®/(2v/27¢)) is the thermodynamical critical field. In the case of an applied current, for perfect
conductivity to break down, the force exerted on the vortices from these pinning sites has to be matched by
the Lorentz force due to the current. Depinning can also arise, however, due to thermal motion. In that case
the pinning energy has to be matched by the thermal energy kpTg,, such that pinning becomes ineffective.



The above estimate yields a value of Ty, ~ 30K in the HTSC BSCCO. It has been suggested, from SANS
[42] and magnetisation measurements [46, 47] , that this is indeed a reasonable estimate. In magnetisation
measurements one observes a sharp increase in zero field cooled magnetization, indicating a sudden penetration
of magnetic flux into the sample [46, 47]. This is possible at the depinning transition, since the mobility of the
flux lines increases and therefore they are more easily redistributed within the sample. More convincingly in
SANS a reemergence of a scattering signal from a flux line lattice has been observed for temperatures above 25
K and applied fields higher than the crossover field B, [42]. As discussed in the previous section, the crossover
field is thought to be manifest due to the accomdodation of the flux lines to the pinning sites, arising from
the increasing flexibilty of the vortices. It appears that with increasing temperature the vortices depin and
briefly become more ordered along their length. As temperature increases further thermally-induced disorder
eventually increases to the point that the lattice melts or decouples [24, 42]. We have recently observed a
depinning transition in single crystal BSCCO samples using puSR. By cooling the sample in an applied field

greater than the crossover field, we effectively produced a vortex glass of mean spacing ay ““*“ = /®q/ Béi)t
The strongly pinned nature of the vortex distribution is verified by the fact that the field distribution within
the sample is not changed by application, at low temperatures, of another field. This can be seen in fig. 8,
where the SR line is shown for a sample cooled to 5 K in a field of 90 mT and changed to 75 mT at 5 K. On
raising the temperature, the thermal energy starts to become comparable to the pinning energy and flux lines
begin t(o) become more mobile. This leads to a redistribution of the vortex lattice around the newly applied
field B

ext*
field Bé?t. A series of SR lines for such an experiment is shown in fig. 8, for a frozen field of 90 mT. The
depinning temperature is T, ~ 28K in accordance with SANS and magnetisation measurements. In fig. 8 the
1SR lines are normalised to their peak value for clarity. In the experiment a distinct drop in muon asymmetry
is observed, due to a very broad distribution of fields leading to fast depolarisation effects which occur at short
times outside of the time window of the experiment [48].

To raise critical currents in HT'SC, the anisotropic strong pinning sites may be introduced, which are pro-
duced by the irradiation of the samples with fast heavy ions. The changes introduced to the magnetic phase
diagram by these columnar defects have been studied intensely over the past years [49, 50, 51, 52, 53, 54]. Since
the irradiation of the samples is completely random, the flux distribution expected for such a sample is close to
a random arrangement discussed earlier, except for some correlations due to interactions between the vortices
[565, 56]. Furthermore, since the defects extend over the whole sample, the columnar defects also increase the
dimensionality of the vortex system, in that they effectively confine the fluctuations of pancake vortices to
within the extent of the defect [57]. As in unirradiated samples, we have also probed the depinning temperature
of samples containing columnar defects by pSR. Magnetisation measurements suggest a significantly higher
depinning temperature from the columnar defects [47]. A series of experiments as described above is shown
for an irradiated sample in fig. 9. The signatures of depinning are the same as for unirradiated samples, but
the depinning temperature is significantly higher, Ty, ~ 55K . This is in good agreement with the results from
magnetisation measurements on the same sample [47]. The value of the uSR data is that it provides additional
information on the microscopic arrangement, such as the growth of domains around different average internal
field values. These results will be discussed in more detail elsewhere [47, 48].

This is apparent in the uSR signal as two peaks, one at the first field B

ext

the other at the present

5 Conclusions

We have shown that transverse field uSR presents an excellent tool for the investigation of the phenomenology
of the vortex lattice in type II superconductors. Thermal and static fluctuations in the vortex positions are
readily observed, leading to the observation of flux-line lattice melting. There is a clear distinction possible
between 3D (line-like) and 2D disorder, making it possible to observe the dimensionality of the vortex system.
In highly anisotropic superconductors this has led to the observation of a dimensional crossover field. We have
also shown, how pSR can be used to investigate microscopically the important phenomenon of pinning in type
IT superconductors.

With knowledge of the phenomenology of the vortex lattice it is also possible to use SR for investigations
of fundamental superconducting properties, such as the pairing symmetry or the value of the magnetic pene-
tration depth. From systematic studies of several classes of superconductors, new insights are gained on their
microscopic nature (see also ref. [8]).
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Figure 1: Field probability density p(B) at four different temperatures. At T=0 the van Hove jumps at By,in
and Bj,q, disappear due to the appearance of cusps in B(z,y). Figure according to ref [4].
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Figure 2: The angular dependence of the uSR relaxation rate for a single-crystal sample of YBCO. As discussed
in the text, the relaxation rate is assumed to be Gaussian, and is proportional to the second moment of the
local field distribution. This quantity is a measure of the inverse square of the penetration depth and follows an
angular dependence as given in Eq. (14). The dashed line is a fit to this function resulting in a value of v = 5.
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Figure 3: Measurements taken from Ref. [23] of the uSR-linewidths ((AB)?)(B,T) in BSCCO at fields of 10mT
(filled circles) and 30mT (empty circles). For T' < T°™ T, the data are described without any adjustable
parameters by Eq. (15), using the appropriate expression for vortex fluctuations in this region, (u2,,)'/?(B,T)
[25] (solid curves). The dashed line is the expected curve for 7™ < T' < T, at 10mT, using (uZ,, ;)(B,T) [25].
The 10mT data migrates towards this curve for temperatures above T, reflecting the crossover illustrated in

Fig. 7.
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Figure 4: The crossover field B, as a function of )\;bQ(O) for different samples of BSCCO. Open symbols
correspond to puSR measurements on samples studied in ref. [29]: circle is sample S; square So; diamond Ss.
Filled diamonds are taken from ref. [32] and are obtained from magnetisation measurements using Hall bar
arrays. The filled circle is from a T1-2212 sample taken from ref. [33], where the crossover field is determined
by magnetisation measurements. The solid line corresponds to the relation B, = ®,/A?,, which describes the
data without any adjustable parameter.
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Figure 5: pSR lineshapes for BSCCO in an applied field of 45 mT. On the right the line shape is shown at 46
K, below the melting transition T},, on the left it is shown at 68 K, above the transition.
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Figure 6: The skewness of the uSR-lineshape may be represented by a quantity « derived from the third and
second moments of the probability distribution p(B) (see text). The lineshape and corresponding a observed
below the transition temperature 7,, are characteristic of a vortex-line lattice, the disappearance of which is
indicated by the sharp change of « at T,,, [28, 24]. These data are field cooled measurements for an applied
field of 30mT.
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Figure 7: Measurements taken from Ref. [24] of the phase line B,,(T"). This represents the transition of the
vortex lattice in BSCCO as determined by changes in the uSR-lineshape, such as those represented in Figure
6. Note the change in the curve at temperature 7™ . The solid curve is a fit of the data, for T < T°™ to the
melting curve Eq.(1) of ref. [24] with ¢ = 0.18, or alternatively a fit to the decoupling curve Eq.(4) of ref. [24]
with ¢cp = 0.076. In this region, electromagnetic coupling between pancake vortices in adjacent superconducting
layers is the dominant interaction. The dashed line is the decoupling function Eq.(3) of ref. [24], with ¢p taken
from above, and a value of v = 160 taken from the position of T°™ (see text). The inset is a logarithmic plot
of the data and fitted curves.
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Figure 8: Field distributions in BSCCO for different temperatures. The spectra were taken after cooling the
samples to 5 K in an applied field of 90 mT. A field of 75 mT was subsequently applied. That the field
distribution is not changed indicates strong pinning in this field and temperature range. As the temperature
is raised, the mean internal field changes from 90 mT to 75 mT in the range 25-40K. This reflects a thermal

depinning of vortices and is in accord with the recent observation of a reemergance of Bragg peaks in SANS for
the same temperature and field [42].
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Figure 9: The field distribution for a sample containing columnar defects at different temperatures. The spectra
were taken after cooling the samples to 5 K in an applied field of 110 mT. The field was subsequently decreased
to 90 mT and the sample temperature raised. For temperatures in the range of 55 - 60 K, the mean internal
field changes from the value of the frozen field (110 mT) to the applied (90 mT). The value of the depinning
temperature thus obtained is in good agreement with that obtained from magnetisation measurements [47].
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