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Avalanche dynamics, surface roughening, and self-organized criticality:
Experiments on a three-dimensional pile of rice

C. M. Aegerter, R. Gu¨nther, and R. J. Wijngaarden
Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081HV Amsterdam, The Nethe

~Received 28 November 2002; published 27 May 2003!

We present a two-dimensional system that exhibits features of self-organized criticality. The avalanches that
occur on the surface of a pile of rice are found to exhibit finite size scaling in their probability distribution. The
critical exponents aret51.21(2) for the avalanche size distribution andD51.99(2) for the cutoff size.
Furthermore, the geometry of the avalanches is studied, leading to a fractal dimension of the active sites of
dB51.58(2). Using a set of scaling relations, we can calculate the roughness exponenta5D2dB50.41(3)
and the dynamic exponentz5D(22t)51.56(8). This result is compared with that obtained from a power-
spectrum analysis of the surface roughness, which yieldsa50.42(3) andz51.5(1) in excellent agreement
with those obtained from the scaling relations.

DOI: 10.1103/PhysRevE.67.051306 PACS number~s!: 45.70.Ht, 05.65.1b, 89.75.2k
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I. INTRODUCTION

The concept of self-organized criticality~SOC! @1# pre-
sents a simple way of modeling slowly driven, out of eq
librium systems. The interesting natural systems though
exhibit SOC, such as rainfall@2#, earthquakes@3#, economic
markets@4#, biological evolution@5#, or the brain@6#, are
difficult to study in a controlled experiment, and more simp
systems have to be found with which the predictions of S
can be tested quantitatively. Among the first toy syste
studied were sand piles; however, it has been shown that
to the appearance of, e.g., kinetic effects, real sand does
behave like an SOC system@7#. Another system that ha
shown indications of SOC in a controlled environment is
dynamics of vortices in type-II superconductors. He
power-law scaling has been observed in the past@8#, how-
ever, not all authors have found avalanche scaling@9#. This is
probably due to the fact that internal avalanches are not m
sured in the usual setup@10#. Recently, Behniaet al. @11#
have measured internal avalanches using arrays of
probes, where they do indeed find a power-law behavio
the avalanches. The ultimate hallmark of SOC, however
the observation of finite size scaling, indicating a true criti
dynamics. So far, there are only two experimental system
one-dimensional~1D! pile of rice @12# or a 1D pile of steel
balls with a random arrangement at its bottom layer@13#,
which have been shown to exhibit finite size scaling in th
avalanche distributions.

The critical exponents obtained from a finite size scal
analysis would yield more information on an SOC system
was discussed by Paczuskiet al. @14# for models in a station-
ary critical state. A system evolving through avalanch
which are distributed according to a power law, will al
show roughening dynamics of its surface. This can be s
as an indication to the origin of the abundance of fracta
self-affine structures in nature. Roughening dynamics
been studied extensively in the past, including the study
interfaces in porous media@15#, the growth of bacterial colo-
nies @16#, the slow combustion@17#, or the rupture@18# of
paper. These systems are well characterized experimen
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and in many cases, the interface dynamics can be mod
analytically by the Kardar-Parisi-Zhang~KPZ! equation@19#.
In one spatial dimension, the KPZ equation is solved exa
for the case of white noise, such that a good compari
between experiment and theory is possible. However, e.g
the burning of paper, there are avalanches observed in
propagation of the front, which are reminiscent of SOC d
namics@20#. This has recently been addressed by Alava a
co-workers @21#, who proposed a mapping between SO
models and the KPZ equation similar to that of Paczuski a
Boettcher@22#. With this mapping, they have been able
obtain SOC from the KPZ equation with the proper kind
noise@21#.

Moreover, roughening processes have also been foun
the experimental SOC systems discussed above. The pr
of a 1D rice pile is a rough interface@23#, as is the front of
magnetic flux penetrating a thin film superconducting sam
@24#. However, the universal scaling relations derived
Paczuskiet al. @14# have not yet been tested experimental
But the fact that both roughening phenomena and avalan
dynamics can be observed in the same experimental sys
such as a 3D rice pile, means that the universal connect
between SOC and surface roughening can be tested ex
mentally.

Here, we present a two-dimensional~2D! system, the sur-
face of a 3D pile of rice, showing both roughening behav
and avalanche dynamics. The avalanche dynamics is stu
in terms of the avalanche size distribution for different siz
of the field of view,L. This allows the observation of finite
size scaling and the determination of the critical expone
D, describing the dependence of the cutoff scale onL, andt
that is the exponent of the avalanche size distribution. T
roughening behavior is studied via the power spectrum of
surface@25#, in both space and time, resulting in a determ
nation of the roughness and growth exponents, respecti
@26#. The connection between these two phenomena
shown from the derivation of scaling relations between
different exponents, where we obtain an excellent agreem
using the experimentally determined values.

The experimental setup for the growth of the rice pile,
well as the reconstruction method used to determine
©2003 The American Physical Society06-1
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structure of the pile and the size of the avalanches, is
cussed in Sec. II. The avalanche size distributions and t
finite size scaling are presented in Sec. III A, together w
the determination of the critical exponents. In Sec. III B, t
surface roughness is analyzed and the necessary techn
are briefly introduced. Also, in this section, the scaling re
tions between the roughness exponents and the critical e
nents are introduced. These results are also put into a w
context and compared with the results obtained from K
roughening systems@27#.

II. EXPERIMENTAL DETAILS

The experiments were carried out on long grained r
with dimensions of typically;23237 mm3, similar to rice
A of Ref. @12#. The pile was grown from a uniform line
source that is 1 m wide. This uniform distribution wa
achieved via a custom built mechanical distributor based
a nail board producing a binary distribution@28#. The actual
setup consists of a board with an arrangement of triangle
shown in Fig. 1. This means that the possible pathways
the rice are continuously split at each level, such that at
bottom we end up with a row of 64 uniformly distribute
compartments. The uniformity of the distribution was me
sured to be of the order of 5%.

At the bottom of the distributor, the grains are slow
down by a sheet of plastic before they hit the top of the p
The rice is fed to the top of the distribution board, from
point source, which drops rice at an average rate of;5 g/s.
This corresponds to 1500 grains per image, which means
over the length of the line the number of grains dropped
place ranges from one to two. This rate is uniform over
time scale between two images.

Once a rice pile is grown, we measure the further evo
tion of the surface coordinates using a specially develo
real-time technique based on the projection of a set of lin
In order to increase the spatial resolution in the direction
growth, we use a set of lines in the base colors~red, green,

FIG. 1. A schematic image of the setup. The distribution bo
can be seen on top, where rice is dropped from a single point
subsequently divided into even compartments. Within the woo
box bounding the rice pile, a reconstruction of its surface is sho
as it is used in further analysis.
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and blue!, which can be easily separated digitally for th
analysis. The lines are projected at a right angle to the a
age surface of the pile and observed at 45° to both the di
tion of projection as well as the surface. This is illustrated
Fig. 2, where a raw image is shown together with the lin
extracted from it. From the distortions of the lines observ
in this way, the coordinates in the 3D space of the pile s
face can be calculated by a simple geometry@28#. With this
reconstruction technique, the 3D coordinates of the wh
field of view can be determined with an accuracy of 2
mm, as we have checked on a number of test surfaces. U
both structured and smooth surfaces, the resolution and
curacy were determined independently. Since the resolu
is roughly matched with the size of the grains, the method
well suited for the present purpose.

In a single experimental run, the growth is studied fo
period of ;4 h, with a picture taken every 30 s. Thus, a
experiment consists of;480 images. The pictures are take
with a high resolution digital camera, having a resolution
204831536 pixels. For every time step, the surface struct
is reconstructed, which gives information about the rough
ing process, as well as the avalanche dynamics.

The size and shape of the avalanches can be determ
from the height difference of the surface between two c
secutive images. The overall growth of the pile is subtrac
from this difference, however, this correction is negligib
and does not influence the results. This is shown in Fig
where the height differenceDh(x,y) is shown for a medium
sized avalanche. This allows one to study the internal a
lanches instead of just the off-edge ones, which has pro
to be important in previous studies~for instance, on super
conducting vortex avalanches@11# and 1D piles of rice@12#!.
In order to obtain the size of such an avalanche,uDhu is
integrated over the area, which yields the displaced volu
DV, corresponding to the size of the avalanche in mm3. In
order to use natural units, we will in the following measu

d
nd
n

n,
FIG. 2. A raw image of the rice pile with the identified line

From the distortions of the lines, the surface geometry is obtain
The dark spot in the image indicates a reference point.
6-2
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the size of the avalanche in terms of the number of topp
grains, which iss5DV/Vgrain , where Vgrain.35 mm3 is
the volume of a single grain of rice.

The data discussed in this paper were obtained in th
separate experiments with a total of 1330 images.

III. RESULTS

In this section, the experimental results are presented.
first show that there is finite size scaling in the avalanc
statistics, which indicates the appearance of a critical stat
the system. Second, we characterize the surface roughne

FIG. 4. The time evolution of the integrated height differen
for the three experimental runs studied. As can be seen, time
relative rest are punctuated by large avalanches, which appea
termittently. When studying the distribution of avalanche sizes~see
Fig. 5!, it is found that there is no intrinsic size to the avalanch
but that they are distributed according to a power law. The differ
experimental runs are indicated by arrows.

FIG. 3. A snapshot of an avalanche, given by the height dif
ence of two subsequent images. In the picture, the height is g
by the gray scale with white corresponding toDh50 and black to
Dh515 mm. Integrating the height differenceDh(x,y) over the
area gives the size of the avalanche in terms of volume, or in te
of the number of moved grains from the volume occupied b
grain Vgrain535 mm3.
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s ofthe rice pile in 2D, both in space and time. The two char
teristic exponents,a for the spatial behavior andz for the
dynamics@26#, can also be obtained from scaling relations
the critical exponents of the avalanche statistics and
found to be in excellent agreement with those determin
from a standard power-spectrum analysis.

A. Avalanche dynamics

The time dependence of the displaced volumeDV in each
time step is shown in Fig. 4 for all the three experimen
discussed here. In this figure, data are shown for avalan
sizes integrated over the total field of view of 60
3600 mm2.

A histogram of these data, giving the avalanche size d
tribution, is shown by the diamonds in Fig. 5~a!. In this fig-
ure, size distributions of subsets of the data, correspondin
smaller fields of view (L550, 150, and 300 mm!, are also
shown. Due to experimental resolution, the smallest a
lanches measured for each subset depend on the size o
subset. The range of sizes from 50350 mm2 to 600
3600 mm2 spans more than a decade and all data ta
together show a power-law scaling of the size distribut
over three decades, with an exponent oft51.20(5).

These data can, however, be scaled to fall onto a sin
curve, as shown in Fig 5~b!. Here, the avalanche sizes a

of
in-

,
t

-
en

s
a

FIG. 5. ~a! The unscaled size distribution functions for the av
lanches from different subsets of the experiments correspondin
sizes ofL550, 150, 300, and 600 mm. Given the asymptotic d
pendence of all them together, there is power-law behavior ove
least three decades, with an exponent oft51.20(5). ~b! The same
data scaled to produce a curve collapse. The sizes of the avalan
are scaled withL2D and the probabilities are scaled withst. The
values used to obtain the best curve collapse aret51.21(2) and
D51.99(2).
6-3
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AEGERTER, GÜNTHER, AND WIJNGAARDEN PHYSICAL REVIEW E67, 051306 ~2003!
scaled withL2D and the probabilities are scaled withst. The
good curve collapse visible in Fig 5~b! indicates the presenc
of finite size scaling in the data, one of the hallmarks
critical behavior in a system and thus an evidence of
appearance of SOC in the 3D rice pile. Due to the finite s
scaling found from the curve collapse, the avalanche s
distribution as a function of system size can be written a
function of one parameter only:

P~s,L !5s2t f S s

LDD , ~1!

where f (x) is constant up to a cutoff scale,

sco}LD. ~2!

The exponentst andD used to obtain the curve collapse
Fig. 5~b! were t51.21(2) andD51.99(2). We note here
that in the usual finite size scaling, separate experiments
used instead of subsets. However, as we have tested on s
lations of a 2D version of the Oslo model@29#, the finite size
scaling using subsets yields the same exponents, but is m
more easily implemented experimentally. As an additio
test, the avalanche dimension can be determined directly
ing a box-counting method in 3D. This yieldsD
52.05(10), consistent with the result from finite si
scaling.

B. Surface roughening

The roughness of a surface can be characterized in di
ent ways. Most commonly, this is done via the width of t
interface as given by its standard deviation@26#. For a 2D
surface, this is given by

w2~L !5
1

L2 (
i , j 51

L

@h~ i , j !2^h&#2, ~3!

where^h& is the average profile of the surface height. Wh
the roughness of the surface has reached saturation, its v
wsat will scale with the system size as a power law,wsat
}La, wherea is the roughness exponent.

A similar type of analysis can be achieved via the pow
spectrum of the surface. Here, one has the advantage
better statistics can be obtained, since the whole surface
be used at once@25#. We determined the power spectru
from a radial average of the 2D Fourier transform of t
surface,

S~k!5uĥ~kx ,ky!u2, ~4!

where k5(kx1ky)
1/2. The Fourier transforms where pe

formed via a fast Fourier transform algorithm, which is w
a data subset corresponding to a power of two (5123512)
was used. From the power spectrum we then determine
distribution functions(k),

s2~k!5E
0

k

S~k!kdk, ~5!
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from which it can be shown@25# that s(2p/k)5w(,),
where,52p/k is the length scale over which the width
calculated. The roughness exponenta can therefore be reli-
ably obtained from the determination ofs(k). An alternative
way of obtaining the roughness exponent is via the two-po
correlation function@26#

C~xW ,t !5„^@h~jW ,t!2h~xW1jW ,t1t!#2&jW ,t…
1/2, ~6!

the radial average of which obeys the same scaling beha
as the distribution function@26#.

In Fig. 6, the correlation and distribution functions for th
rice-pile surface are shown, averaged over all time step
all experiments~1330 images!. The part of the surface stud
ied consists of 5123512 mm in the center of the surfac
laterally ~along the horizontal direction! and starting from a
height of 200 mm. As can be seen from the double logar
mic plot, there is power-law scaling with an exponenta
50.42(3).

The scaling behavior of the interface width can, howev
also be determined from the cutoff size of the avalanche
a system with sizeL. The size of such an avalanche will b
proportional to the maximal height difference, given by t
saturation widthwsat , times the maximal area of the ava
lanche. As can be seen from Fig. 3, the avalanche shape
fractal, which means thatsco}wsatL

dB, wheredB is the frac-
tal dimension of the cluster of displaced grains. Equating t
expression with Eq.~2!, one obtainswsat}LD2dB, which im-
plies the scaling relation

a5D2dB . ~7!

Such a scaling relation between the roughness exponent
the exponents characterizing the avalanches was also de
by Paczuskiet al. @14# from different arguments.

In order to determinedB in an accurate manner, we stud
ied avalanches more than two standard deviations larger
the average size. This corresponds to a subset of;100 im-

FIG. 6. Determination of the roughness exponent from a pow
spectrum analysis as well as from the correlation functionC(x)
~squares!. After subtracting the average slope of the pile, its 2
power spectrum is calculated. After taking a radial average, i
integrated overk space in order to give the distribution functions,
which follows a power-law dependences}k2a, with a roughness
exponent a50.42(3). Similarly, the correlation functionC(x)
}xa ~squares! is calculated from the pile surface, resulting in th
same exponent as that determined from the distribution functio
6-4
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ages from all experiments. After thresholding the height d
ference fields,Dh(x,y), at their mean value, we applied
simple box-counting method@30# to the resulting clusters
This is shown in Fig. 7, where the number of active pixels
a box of given size is shown as a function of the box si
The result is a power law with an exponent of21.58(2),
indicating a fractal dimension ofdB51.58(2). Inserting this
value into scaling relation~7!, the roughness exponent
found to bea50.41(3), in excellent agreement with tha
determined from the roughness analysis.

The dynamics of the roughening process is likewise a
lyzed via the distribution function. In contrast to the roug
ness analysis above, we now determine the distribution fu
tion for the time dependencehi , j (t)2^hi , j& t for each pixel,
where ^•••& t denotes the average over the duration of
experiment. Again, the distribution function given by

s2~v!5E uĥ~v!u2dv ~8!

is equal to the momentary widths(2p/v)5w(t). Thus, the
growth exponentb, describing the scaling of the width wit
time, can be determined from the distribution functio
Again, the correlation function shows the same scaling
havior in time, allowing a separate determination ofb. Both
results are shown in Fig. 8, where it can be seen that the
a good power-law scaling of the distribution function, as w
as the correlation function, over two decades with an ex
nent ofb50.28(3). Another way of describing the dynamic
of an interface is via the dynamic exponentz, which de-
scribes the scaling of the saturation time with the syst
size,

t3}Lz. ~9!

It can be easily obtained@26# from the roughness and growt
exponents via

z5
a

b
. ~10!

FIG. 7. Determination of the fractal dimension of the av
lanches. Over all experiments, avalanches with a size two stan
deviations larger than the average were studied. The contours
derived from a thresholding at the value of the mean height dif
ence for each image. The fractal dimension is subsequently d
mined from a simple box-counting method.
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From the values determined above, we thus obtainz
5 1.5~1!.

The dynamic exponentz can also be derived from a sca
ing relation using the critical exponents of the avalanc
dynamics. The saturation timet3 will be roughly given by
the time it takes for an avalanche of the cutoff sizesco to
appear. Since material is added to the system at a con
rate, the number of grains added until a cutoff avalanc
occurs is proportional to the crossover timet3 . On the other
hand, the material added not only results in an avalanch
size sco , but will also be lost by smaller avalanches, su
that the total material necessary to obtain an avalanch
sizesco can be estimated from

E
0

sco
sP~s!ds}sco

22t . ~11!

From Eq. ~2!, we obtain for the crossover timet3

}LD(22t). With Eq.~9!, this immediately leads to the scalin
relation

z5D~22t!, ~12!

which was also derived by Paczuskiet al. @14# from more
general arguments. Using the values forD andt determined
above from the curve collapse of the avalanche size distr
tions, we obtainz51.56(8), which is again in very good
agreement with the result of the power-spectrum analysiz
51.5(1). Note also that the exponentsa and z fulfill the
KPZ scaling relation@19# a1z52, which is valid indepen-
dent of the dimension of the system and depends only on
fact that the growth is driven by height gradients. Furth
more, the roughness exponenta50.42(3) is in good agree
ment with a numerical determination of the behavior of t
2D KPZ equation@27#. The connection between roughenin
and SOC will be discussed in more detail below.

rd
re

r-
er-

FIG. 8. Determination of the growth exponent from a powe
spectrum analysis. Here, the distribution functions has been deter-
mined from the time dependence of the height of each pixel. T
data show a power-law dependences}v2b, with a growth expo-
nent b50.28(3). The sameresult is obtained via the correlatio
function, indicated by open symbols. From the growth and rou
ness exponents, the dynamic exponentz5a/b51.5(1) can be de-
termined.
6-5
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IV. CONCLUSIONS

In conclusion, we have presented results of both the a
lanche and the roughening behavior of an experimental S
system. In addition, we presented simple arguments for
versal scaling relations, derived by Paczuskiet al. @14# on
general grounds, connecting the avalanche and the roug
ing behavior. We obtain aquantitativeagreement of the ex
perimental exponents characterizing the roughness and t
describing the avalanche statistics. This means that
roughening of the surface of the pile is governed by its
derlying avalanche dynamics, which was already conjectu
from models of interface depinning. Earlier experimen
studies@12,23# have considered the avalanche dynamics
the roughening behavior of the 1D version of the pres
system, where finite size scaling was also found@12#. The
above scaling relations, showing quantitatively the conn
tion between the two phenomena, were not previously tes

The fact that KPZ dynamics is observed in an SOC s
e
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tem, as indicated by the fact that the roughness and dyna
exponents obtained here fulfill the KPZ scaling relation,
surprising. This is mostly because in SOC systems, the c
cal state is self-organized, whereas in KPZ systems,
roughening is put into the dynamics by obeying the pro
symmetries. However, it has been argued by Alava and
workers@21# that there is a mapping of SOC models, whi
naturally lead to the necessary symmetries. In this contex
should also be noted that experiments on KPZ systems s
as burning paper have also observed avalanches in the
vance of fronts@20#.
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