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Avalanche dynamics, surface roughening, and self-organized criticality:
Experiments on a three-dimensional pile of rice
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We present a two-dimensional system that exhibits features of self-organized criticality. The avalanches that
occur on the surface of a pile of rice are found to exhibit finite size scaling in their probability distribution. The
critical exponents are=1.21(2) for the avalanche size distribution abd=1.99(2) for the cutoff size.
Furthermore, the geometry of the avalanches is studied, leading to a fractal dimension of the active sites of
dgz=1.582). Using a set of scaling relations, we can calculate the roughness expordht-dg=0.41(3)
and the dynamic exponemt=D(2— 7)=1.568). This result is compared with that obtained from a power-
spectrum analysis of the surface roughness, which yield®.42(3) andz=1.5(1) in excellent agreement
with those obtained from the scaling relations.
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I. INTRODUCTION and in many cases, the interface dynamics can be modeled
analytically by the Kardar-Parisi-Zhari§PZ2) equation 19].
The concept of self-organized criticalisOO [1] pre-  In one spatial dimension, the KPZ equation is solved exactly

sents a simple way of modeling slowly driven, out of equi-for the case of white noise, such that a good comparison
librium systems. The interesting natural systems thought t®€tween experiment and theory is possible. However, e.g., in
exhibit SOC, such as rainfdl2], earthquake§3], economic ~ the burning of paper, there are avalanches observed in the
markets[4], biological evolution[5], or the brain[6], are prop_agatlon of_the front, which are reminiscent of SOC dy-
difficult to study in a controlled experiment, and more simpleN@mics[20]. This has recently been addressed by Alava and
systems have to be found with which the predictions of SOCSO-Workers[21], who proposed a mapping between SOC
can be tested quantitatively. Among the first toy system odels and the K.PZ equatlon §|m|Iar to that of Paczuski and
studied were sand piles; however, it has been shown that d oet_tcher[22]. With this mapping, the_y have been al_)le to
to the appearance of, e.g., kinetic effects, real sand does nd tain SOC from the KPZ equation with the proper kind of

! noise[21].
behave_ I'k.e an SOC systg{ﬂ]. Another syst_em that has Moreover, roughening processes have also been found in
shown indications of SOC in a controlled environment is thethe experimental SOC systems discussed above. The profile
dynamics of vortices in type-ll superconductors. Here .

i i 'of a 1D rice pile is a rough interfad®3], as is the front of
power-law scaling has been observed in the pakthow- magnetic flux penetrating a thin film superconducting sample

ever, not all authors have found avalanche scdjgThisis  [24]. However, the universal scaling relations derived by
probably due to the fact that internal avalanches are not megaczuskiet al. [14] have not yet been tested experimentally.
sured in the usual setufd0]. Recently, Behnieet al. [11] Byt the fact that both roughening phenomena and avalanche
have measured internal avalanches using arrays of Hadynamics can be observed in the same experimental system,
probes, where they do indeed find a power-law behavior oguch as a 3D rice pile, means that the universal connections
the avalanches. The ultimate hallmark of SOC, however, i®etween SOC and surface roughening can be tested experi-
the observation of finite size scaling, indicating a true criticalmentally.
dynamics. So far, there are only two experimental systems, a Here, we present a two-dimensioriaD) system, the sur-
one-dimensiona(1D) pile of rice[12] or a 1D pile of steel face of a 3D pile of rice, showing both roughening behavior
balls with a random arrangement at its bottom layE8],  and avalanche dynamics. The avalanche dynamics is studied
which have been shown to exhibit finite size scaling in theirin terms of the avalanche size distribution for different sizes
avalanche distributions. of the field of view,L. This allows the observation of finite
The critical exponents obtained from a finite size scalingsize scaling and the determination of the critical exponents
analysis would yield more information on an SOC system, a®, describing the dependence of the cutoff scale.pand 7
was discussed by Paczusltial.[14] for models in a station- that is the exponent of the avalanche size distribution. The
ary critical state. A system evolving through avalanchesyoughening behavior is studied via the power spectrum of the
which are distributed according to a power law, will also surface[25], in both space and time, resulting in a determi-
show roughening dynamics of its surface. This can be seenation of the roughness and growth exponents, respectively
as an indication to the origin of the abundance of fractal of26]. The connection between these two phenomena is
self-affine structures in nature. Roughening dynamics hashown from the derivation of scaling relations between the
been studied extensively in the past, including the study oflifferent exponents, where we obtain an excellent agreement
interfaces in porous medja5], the growth of bacterial colo- using the experimentally determined values.
nies[16], the slow combustiofl7], or the rupturg 18] of The experimental setup for the growth of the rice pile, as
paper. These systems are well characterized experimentalyell as the reconstruction method used to determine the
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FIG. 1. A schematic image of the setup. The distribution board
can be seen on top, where rice is dropped from a single point and
subsequently divided into even compartments. Within the wooden
box bounding the rice pile, a reconstruction of its surface is shown,
as it is used in further analysis. FIG. 2. A raw image of the rice pile with the identified lines.
From the distortions of the lines, the surface geometry is obtained.
structure of the pile and the size of the avalanches, is disfhe dark spot in the image indicates a reference point.
cussed in Sec. Il. The avalanche size distributions and their
finite size scaling are presented in Sec. Il A, together withand blug, which can be easily separated digitally for the
the determination of the critical exponents. In Sec. Ill B, theanalysis. The lines are projected at a right angle to the aver-
surface roughness is analyzed and the necessary techniqugs surface of the pile and observed at 45° to both the direc-
are briefly introduced. Also, in this section, the scaling rela-tion of projection as well as the surface. This is illustrated in
tions between the roughness exponents and the critical exp&id. 2, where a raw image is shown together with the lines
nents are introduced. These results are also put into a widéxtracted from it. From the distortions of the lines observed
context and compared with the results obtained from KPZn this way, the coordinates in the 3D space of the pile sur-
roughening system7]. face can be calculated by a simple geom¢g§]. With this
reconstruction technique, the 3D coordinates of the whole
field of view can be determined with an accuracy of 2—-3
mm, as we have checked on a number of test surfaces. Using
The experiments were carried out on long grained ricéboth structured and smooth surfaces, the resolution and ac-
with dimensions of typically~2Xx2 X7 mn?¥, similar to rice  curacy were determined independently. Since the resolution
A of Ref. [12]. The pile was grown from a uniform line is roughly matched with the size of the grains, the method is
source thats 1 m wide. This uniform distribution was well suited for the present purpose.
achieved via a custom built mechanical distributor based on In a single experimental run, the growth is studied for a
a nail board producing a binary distributip®8]. The actual period of ~4 h, with a picture taken every 30 s. Thus, an
setup consists of a board with an arrangement of triangles, axperiment consists of 480 images. The pictures are taken
shown in Fig. 1. This means that the possible pathways oWith a high resolution digital camera, having a resolution of
the rice are continuously split at each level, such that at the048< 1536 pixels. For every time step, the surface structure
bottom we end up with a row of 64 uniformly distributed is reconstructed, which gives information about the roughen-
compartments. The uniformity of the distribution was mea-ing process, as well as the avalanche dynamics.
sured to be of the order of 5%. The size and shape of the avalanches can be determined
At the bottom of the distributor, the grains are slowedfrom the height difference of the surface between two con-
down by a sheet of plastic before they hit the top of the pilesecutive images. The overall growth of the pile is subtracted
The rice is fed to the top of the distribution board, from afrom this difference, however, this correction is negligible
point source, which drops rice at an average rate-6fg/s.  and does not influence the results. This is shown in Fig. 3,
This corresponds to 1500 grains per image, which means thathere the height differenc&h(x,y) is shown for a medium
over the length of the line the number of grains dropped pesized avalanche. This allows one to study the internal ava-
place ranges from one to two. This rate is uniform over thdanches instead of just the off-edge ones, which has proven
time scale between two images. to be important in previous studiéfr instance, on super-
Once a rice pile is grown, we measure the further evoluconducting vortex avalanch&l] and 1D piles of ricg 12]).
tion of the surface coordinates using a specially developeth order to obtain the size of such an avalancheh| is
real-time technique based on the projection of a set of linedgntegrated over the area, which yields the displaced volume
In order to increase the spatial resolution in the direction ofAV, corresponding to the size of the avalanche in®min
growth, we use a set of lines in the base colgesl, green, order to use natural units, we will in the following measure

Il. EXPERIMENTAL DETAILS
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FIG. 3. A snapshot of an avalanche, given by the height differ- *e TS,
ence of two subsequent images. In the picture, the height is given = 10°] ¢’
by the gray scale with white corresponding&@d=0 and black to g %:“;‘
Ah=15 mm. Integrating the height differenceh(x,y) over the “a w
area gives the size of the avalanche in terms of volume, or in terms 10’4 ?
of the number of moved grains from the volume occupied by a
grain Vgyin =35 mn?. 10° , ,
10' 107 10° 10*
D
the size of the avalanche in terms of the number of toppled sk
fthamsi Wh'Chf ISS= AIV/Vgr_ain ,fV\(here Vgrain=35 mn? is FIG. 5. (a) The unscaled size distribution functions for the ava-
€ volume or a single grain or rice. lanches from different subsets of the experiments corresponding to
The data dIS.CUSSGd in this paper Were.obtalned in thregizes ofL =50, 150, 300, and 600 mm. Given the asymptotic de-
separate experiments with a total of 1330 images. pendence of all them together, there is power-law behavior over at
least three decades, with an exponentofl1.2(0(5). (b) The same
IIl. RESULTS data scaled to produce a curve collapse. The sizes of the avalanches

are scaled with. "® and the probabilities are scaled wigh. The
In this section, the experimental results are presented. Wealues used to obtain the best curve collapserard.21(2) and
first show that there is finite size scaling in the avalanché=1.992).

statistics, which indicates the appearance of a critical state i”& rice pile in 2D. both in space and time. The two charac-
the system. Second, we characterize the surface roughness F P ’ P :

teristic exponentsg for the spatial behavior and for the

dynamicq 26|, can also be obtained from scaling relations of

the critical exponents of the avalanche statistics and are

20:0  expl exp2 exp3 found to be in excellent agreement with those determined
from a standard power-spectrum analysis.

< 4+ 4—>

1.5x10° - A. Avalanche dynamics

The time dependence of the displaced volulmnéin each
1.0x10° 4 time step is shown in Fig. 4 for all the three experiments
discussed here. In this figure, data are shown for avalanche
sizes integrated over the total field of view of 600
5.0x10" X 600 mnf¥.

A histogram of these data, giving the avalanche size dis-
tribution, is shown by the diamonds in Fig@ In this fig-
0 200 400 600 800 1000 1200 1400 ure, size distributions of subsets of the data, corresponding to
smaller fields of view (=50, 150, and 300 mjnare also
shown. Due to experimental resolution, the smallest ava-
FIG. 4. The time evolution of the integrated height difference l2nches measured for each subset depend on the size of that

for the three experimental runs studied. As can be seen, times subset. The range of sizes from >80 mnf to 600
relative rest are punctuated by large avalanches, which appear ir¢ 600 mnt spans more than a decade and all data taken
termittently. When studying the distribution of avalanche sizee  together show a power-law scaling of the size distribution
Fig. 5), it is found that there is no intrinsic size to the avalanches,0ver three decades, with an exponentrefl.2Q(5).

but that they are distributed according to a power law. The different These data can, however, be scaled to fall onto a single
experimental runs are indicated by arrows. curve, as shown in Fig(b). Here, the avalanche sizes are

s (grains)

0.0

time (steps)
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scaled withL ~P and the probabilities are scaled wih The 10°
good curve collapse visible in Figly indicates the presence = Cr) a.=0.42(3)
of finite size scaling in the data, one of the hallmarks of o o(k)
critical behavior in a system and thus an evidence of the
appearance of SOC in the 3D rice pile. Due to the finite size g 10
scaling found from the curve collapse, the avalanche size )
distribution as a function of system size can be written as a °
function of one parameter only:
_ ( S) 10° 0 ] i) 3
P(s,L)=s""f| —|, (1) 10 10 10 10
LD radial distance (mm)
wheref(x) is constant up to a cutoff scale, FIG. 6. Determination of the roughness exponent from a power-
spectrum analysis as well as from the correlation functix)
Sco™ LD, 2 (squares After subtracting the average slope of the pile, its 2D

power spectrum is calculated. After taking a radial average, it is
The exponents and D used to obtain the curve collapse in integrated ovek space in order to give the distribution functiot
Fig. 5(b) were r=1.21(2) andD=1.992). We note here which follows a power-law dependeneeck™“, with a roughness
that in the usual finite size scaling, separate experiments afxponenta=0.423). Simlarly, the correlation functionC(x)
used instead of subsets. However, as we have tested on sinftX” (Squaresis calculated from the pile surface, resulting in the
lations of a 2D version of the Oslo mod&l9], the finite size ~ Same exponent as that determined from the distribution function.
scaling using subsets yields the same exponents, but is much o _
more easily implemented experimentally. As an additionaff®m Which it can be showri25] that o(2m/k) =w(¢),

test, the avalanche dimension can be determined directly u¥!heref=2m/k is the length scale over which the width is
ing a box-counting method in 3D. This yield® calculated. The roughness exponentan therefore be reli-

—2.05(10), consistent with the result from finite size ably obtained from the determination @{k). An alternative
scaling. way of obtaining the roughness exponent is via the two-point
correlation functior{ 26]

B. Surface roughening C(x,1)=([h(&, 1) —h(x+ & t+ 7_)]2>§’T)1/2, (6)

The roughness of a surface can be characterized in differ-
ent ways. Most commonly, this is done via the width of thethe radial average of which obeys the same scaling behavior
interface as given by its standard deviati@6]. For a 2D  as the distribution functiofi26].
surface, this is given by In Fig. 6, the correlation and distribution functions for the

rice-pile surface are shown, averaged over all time steps of

1 & . 5 all experimentg1330 imager The part of the surface stud-
L2 ijzzl [h(i.j)—(h)]%, (3 jed consists of 512512 mm in the center of the surface

' laterally (along the horizontal directigrand starting from a
height of 200 mm. As can be seen from the double logarith-
maic plot, there is power-law scaling with an exponent
=0.423).

The scaling behavior of the interface width can, however,

«L® wherea is the roughness exponent. Iso be determined f th toff si f th lanches i
A similar type of analysis can be achieved via the powel‘a S0 be determined from the cutoll size of the avalanches in
system with sizé. The size of such an avalanche will be

spectrum of the surface. Here, one has the advantage thit onal to th < nal heiaht diff ; by th
better statistics can be obtained, since the whole surface caoportional to the maximal heig imerence, given by the

be used at oncg25]. We determined the power spectrum saturation widthws,, times thg maximal area of the ava-
from a radial average of the 2D Fourier transform of thelanChe' AS. can be seen from Flg.d3, the avala_nche shapeis a
fractal, which means that, ,cw,.L “8, wheredg is the frac-

wA(L)=

where(h) is the average profile of the surface height. When
the roughness of the surface has reached saturation, its val
W, WIill scale with the system size as a power lamy,;

surface, . . . . . .
. tal dimension of the cluster of displaced grains. Equating this
— IR 2 expression with Eq(2), one obtainsvg,e<LP %, which im-
S(k)=[hcky ky)[% “ plies the scaling relation
where k= (k,+k,)% The Fourier transforms where per- a=D—dg. )

formed via a fast Fourier transform algorithm, which is why

a data subset corresponding to a power of two (6322)  gych a scaling relation between the roughness exponent and
was used. From the power spectrum we then determine th@e exponents characterizing the avalanches was also derived

distribution functiono(k), by Paczusket al.[14] from different arguments.
In order to determinelg in an accurate manner, we stud-
“ ied lanches more than two standard deviations larger than
o?(k)= | S(x)xdx, (5 ~ ledavalanches more 9
the average size. This corresponds to a subset 0 im-
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FIG. 7. Determination of the fractal dimension of the ava-

lanches. Over all experiments, avalanches with a size two standard FIG. 8. Determination of the growth exponent from a power-

deviations larger than the average were studied. The contours ar _ectrum analysis. Here, the distribution functioas been deter-

derived from a thresholding at the value of the mean height differ-mlm':‘d from the time dependence of the height of each pixel. The

. . L data show a power-law dependenge w #, with a growth expo-
ence for each image. The fractal dimension is subsequently deter- . . . .

. ) . nent 3=0.283). The sameaesult is obtained via the correlation
mined from a simple box-counting method.

function, indicated by open symbols. From the growth and rough-

ages from all experiments. After thresholding the height dif-?eer‘:':ineggonems’ the dynamic exporenta/5=1.5(1) can be de-
ference fieldsAh(x,y), at their mean value, we applied a

simple box-counting methof30] to the resulting clusters.
This is shown in Fig. 7, where the number of active pixels in
a box of given size is shown as a function of the box size.
The result is a power law with an exponent ©f1.5§2),
indicating a fractal dimension afg=1.582). Inserting this
value into scaling relation(7), the roughness exponent is

found to bea=0.41(3), in excellent agreement with that appear. Since material is added to the system at a constant

determined from the roughness analysis. rate, the number of grains added until a cutoff avalanche
The dynamics of the roughening process is likewise ana(_)CCl'JI’S is pro ortional%o the crossover ti On the other
lyzed via the distribution function. In contrast to the rough- prop e

ness analysis above, we now determine the distribution fund}and, the material added not only results in an avalanche of

tion for the time dependends, ;(t)—(h; ;) for each pixel, size s.,, but will also be lost by smaller avalanches, such

where (- - -}, denotes the average over the duration of thethat the total material necessary to obtain an avalanche of

experiment. Again, the distribution function given by Sizes;, can be esimated from

From the values determined above, we thus obtain
= 1.52).

The dynamic exponerzcan also be derived from a scal-
ing relation using the critical exponents of the avalanche
dynamics. The saturation tinte, will be roughly given by
the time it takes for an avalanche of the cutoff sig to

X w)= f |A(w)|?dw (8) fOSCOSP(s)dsocsggT. (11)

is equal to the momentary widd(2 7/ w) =w(t). Thus, the
growth exponenp3, describing the scaling of the width with D(2—7) A\ . . .
time, can be determined from the distribution function. <L . - With Eq.(9), this immediately leads to the scaling
: i . ; relation
Again, the correlation function shows the same scaling be-
havior in time, allowing a separate determinationBofBoth
results are shown in Fig. 8, where it can be seen that there is z=D(2-1), (12
a good power-law scaling of the distribution function, as well

as the correlation function, over two decades with an expoynich was also derived by Paczuskd al. [14] from more

nent of 8= 0.2&3). Another way of describing the dynamics general arguments. Using the values band 7 determined

of an interface is via the dynamic exponentwhich de-  ahoye from the curve collapse of the avalanche size distribu-

scribes the scaling of the saturation time with the systeMions, we obtainz= 1.5§8), which is again in very good

size, agreement with the result of the power-spectrum analysis,

=1.5(1). Note also that the exponents and z fulfill the

KPZ scaling relatiorj19] a+z=2, which is valid indepen-

. ) dent of the dimension of the system and depends only on the

It can be easily obtainef@6] from the roughness and growth ¢act that the growth is driven by height gradients. Further-

exponents via more, the roughness exponent 0.42(3) is in good agree-
ment with a numerical determination of the behavior of the

(10 2D KPZ equatior{27]. The connection between roughening
and SOC will be discussed in more detail below.

From Eq. (2), we obtain for the crossover time,

ty L2 (9)

Z:

hd
3
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IV. CONCLUSIONS tem, as indicated by the fact that the roughness and dynamic

In conclusion, we have presented results of both the av exponents ob_tai_ned here fulfill the_ KPZ scaling relation, 'S

lanche and the r,oughening behavior of an experimental SO urpnsmg._Thls IS most!y because in S.OC systems, the criti-
Cal state is self-organized, whereas in KPZ systems, the

system. In addition, we presented simple arguments for uni- L . ; ,
versal scaling relations, derived by Paczuskal. [14] on roughening s put into the dynamics by obeying the proper

eneral grounds, connecting the avalanche and the rou he%)_/mmetries. However, it has been argued by Alava and co-
9 ar ' . g the 9 workers[21] that there is a mapping of SOC models, which
ing behavior. We obtain guantitativeagreement of the ex-

. o naturally lead to the necessary symmetries. In this context, it
perlm_ental exponents character!zmg the rpughness and thogﬁould also be noted that experiments on KPZ systems such
describing the avalanche statistics. This means that th

roughening of the surface of the pile is governed by its un-gs burning paper have also observed avalanches in the ad-
: . . . yance of frontq20].
derlying avalanche dynamics, which was already conjectured

from models of interface depinning. Earlier experimental

studies[lZ,ZC_ﬂ have considered the avalanche dynamics and ACKNOWLEDGMENTS
the roughening behavior of the 1D version of the present
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