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Abstract. – Self-organized criticality (SOC) has attracted considerable interest due to its
possible wide ranging implications on a broad range of subjects. However, the experimental
observation of SOC using stringent criteria has been difficult and the question of the critical
parameters to observe SOC remains open. This is partly due to the fact that there are different
criteria applied in order to claim SOC. Here we endeavour to study two aspects of this. First
of all, we study the influence of the presence of quenched disorder on the appearance of SOC in
the vortex dynamics in niobium by changing the amount of hydrogen impurities. Furthermore,
we study whether the roughness properties of the pile surface can be used as a criterion for
the appearance of SOC on a par with the observation of finite-size scaling. For this purpose,
we compare the roughness and dynamic exponents of the vortex landscape to the avalanche
size distribution for different amounts of disorder. The absence of a transition to SOC in the
roughness exponent implies that the presence of a rough surface by itself cannot be used as a
sufficient criterion for the observation of SOC. A determination of the dynamics of the surface
properties, however, shows a transition similar to that of the avalanche properties.

Introduction. – Self-organized criticality (SOC) [1] has attracted considerable interest
due to its possibly wide ranging applicability in describing the natural world [2]. However,
on the side of stringent experimental observation, the situation is more complicated. This
is in part due to the fact that for such investigations, one needs to have a model system,
where all of the relevant parameters can be controlled and all of the relevant properties can
be determined. In many cases this is difficult, and clear-cut, stringent criteria for SOC are
usually not applied in experiments looking for SOC, but one simply studies the occurrence
of power laws in the avalanche distributions [3] or the surface roughness [4]. In order to
show that a system indeed is in a critical state, there should however be a scaling of the
properties with the system size (finite-size scaling), which in addition yields information on
other relevant exponents. A theoretical investigation of different SOC models [5] has found
that there are a number of scaling relations between the different exponents in a SOC system.
With a full characterisation of many experimental parameters these can then be checked as
well, providing an even more stringent test of SOC. Recently, such an investigation has been
carried out on a three-dimensional pile of rice, where both the avalanche size distribution
c© EDP Sciences
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for different system sizes and the surface roughness and dynamics were determined [6]. The
applicable scaling relations [5] between these different quantities were fulfilled [6]. A similar
investigation was carried out by studying magnetic vortices in YBa2Cu3O7 [7, 8], where the
same parameters were checked and the same scaling relations were fulfilled. This finding has
shown that there is an intimate connection between surface roughness and SOC as exemplified
by the scaling relations. On the other hand, many systems which were thought to exhibit SOC
from a modeling point of view, such as fine powders in a rotating drum, or piles of sand grown
on a flat plate from a point source, have not faced up with experimental tests of SOC [9].
Thus it was unclear what critical parameters had to be applied in order to observe SOC. From
investigations of a one-dimensional pile of rice [10] and a two-dimensional pile of beads [11],
where finite-size scaling of the avalanches was observed, the role of slow driving and over-
damped dynamics was emphasized. This is also corroborated in theory, where in the view of
SOC as a phase transition [12], slow driving is the necessary parameter to reach an underlying
critical point. On the other hand, Altshuler et al. [13] have studied a one-dimensional pile
of steel balls with different types of bases and found that only with rough bases was there
finite-size scaling of the avalanches and hence SOC. This has led to the conjecture that the
presence of quenched disorder is a necessary prerequisite in order to observe SOC [13]. Again,
this is firmly based in theory as many SOC models can be mapped to percolation type phase
transitions, which depend crucially on the presence of quenched disorder [12,14–16].

In the critical state in type-II superconductors, SOC was observed by many authors using
various criteria [3,4,7,17]. When magnetic vortices enter a sample, the competition of Lorentz
and pinning forces leads to the build-up of a constant flux gradient [18]. In fact, the problem
can be mapped onto that of a growing pile of sand [19], where the vortices take the role
of the grains and the flux jumps that of the avalanches. The observation of SOC in flux
avalanches has mainly relied on the presence of strong pinning in the samples, illustrating the
importance of quenched disorder for the observation of SOC. We have previously studied the
effect of quenched disorder quantitatively by varying its amount in the superconductor Nb
by introducing H impurities [17]. By studying the avalanche size distributions with different
cut-off sizes, we found that a minimum amount of quenched disorder is necessary in order to
produce a finite-size scaling collapse of the avalanche size distributions and hence a critical
state. Here, we study the roughness properties of the corresponding flux landscapes in order
to determine to what extent such roughness properties can be used as an indicator for the
occurrence of SOC as is indicated by the presence of scaling relations [5]. For this purpose we
determine the spatio-temporal correlation functions of the flux landscape and their roughness
and growth exponents [20] for different amounts of quenched disorder. Their dependence on
the amount of disorder is compared to the observation of finite-size scaling [17].

Experimental setup. – The experiments were carried out in an advanced magneto-optical
(MO) microscope [21] capable of determining directly the magnetic flux density, Bz, at the
surface of the sample. The sample is placed underneath an iittrium-iron Garnet indicator [22],
which has a mirror layer on its bottom. In contrast to more usual MO setups, the incoming
polarisation is modulated by a certain angle α in our apparatus [21]. Thus we have an
increased resolution at small magnetic flux densities which is important in determining the
size and distribution of flux avalanches in our samples. The spatial distribution of magnetic
flux density is recorded using a charged coupled device (CCD) camera with a resolution of
782×582 pixels, resulting in a spatial resolution of 3.4µm on the sample.

The samples consist of Nb films of a thickness of 500 nm, which were deposited under ultra
high vacuum conditions onto a sapphire substrate in its R-plane (11̄02) orientation [23]. The
films were subsequently covered by a 10 nm thick Pd layer in order to prevent oxidation as
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Fig. 1 – The magnetic flux landscape as determined by MO imaging for different H loading pressures.
The values of the local flux densities are indicated by the scale bar in a), which applies to all figures.
Part a) shows the as deposited film, whereas parts b)-e) show increasing H loading pressures of 80,
260, 1130, 1810 Pa, respectively. As can be seen from the figure, the flux landscapes change drastically
becoming much more rugged and less compact with increasing H impurities.

well as to allow the catalytic uptake of H into the films, thus changing the amount of quenched
disorder [24]. In the experiment, this was done by equilibrating the sample at a certain H
pressure for one hour and then cooling down to 4.2K, where the experiments were carried out.
During the cooling-down process a phase separation of H-rich and H-poor regions sets in [25],
where superconductivity is suppressed in the H-rich phase [26]. Thus the H-rich clusters of a
size of roughly 0.1 to 1µm act as effective pinning sites for the vortices. We have varied the
pinning density over a wide range by the use of a set of H loading pressures of 80, 260, 1130,
and 1810Pa. At these pressures, the resulting pinning density is such that the pinning sites
can be treated as independent. The pinning density in the untreated sample, we estimate,
corresponds to a pressure of roughly 10Pa. For every H concentration, the field is increased
in steps of 50µT from 0 to 20mT, with an MO picture taken every step after letting the field
relax for 3 seconds. This sequence is repeated twice, after zero-field cooling the sample, in
order to check for reproducibility [17].

As shown in fig. 1, the magnetic-field distribution changes drastically with the introduction
of quenched disorder, leading to a more rugged and less compact landscape as the density of
pinning centers is increased. Such a significant change has also been described for the shape
and size distribution of the flux avalanches [17].

Roughness analysis. – In order to quantify the difference of the flux landscapes on
increasing the density of H impurities, we have subsequently performed a roughness analysis
of the magnetic-field distributions [8,20]. A roughness analysis in both space and time can best
be carried out by calculating the spatio-temporal correlation function of the flux landscape
after subtracting the mean gradient, i.e. we consider b(x, y) = Bz(x, y) − 〈Bz(y)〉x, where x
(y) is the coordinate parallel (perpendicular) to the mean vortex penetration direction. The
correlation function is then defined by

C2(x, y, t) = 〈(b(ξ + x, η + y, τ + t)− b(ξ, η, τ))2〉ξ,η,τ , (1)

where 〈.〉 denotes an ensemble average. For a self-affine surface, the temporal correlation
function scales as [20] C(0, t) ∝ tβ , a power law with an exponent β, called the growth
exponent. The spatial part scales as C(r, 0) ∝ rα, where α is called the roughness exponent.
Here, r =

√
x2 + y2 is the radial distance in the plane. In order to determine the full two-

dimensional (2d) roughness properties of the flux landscape, we determine the 2d correlation
function in Fourier space using an FFT algorithm [8]. For this we determine the average
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position of the flux boundary by taking the point where the magnetic field strength is three
times that of the standard deviation found in the Meissner state. From this position we go
backwards towards the sample edge for 128 pixels, such that we have a square window of
observation in the center of the sample. Subsequently, we perform a radial average of the
spatial correlation function in order to determine the roughness exponent. Similarly, the
growth exponent is determined. Due to the counting noise in the CCD camera, there is an
intrinsic noise in the correlation function, which can strongly influence the determination of
the roughness and growth exponents. We have previously characterised our system, such that
we can determine the intrinsic noise precisely and correct for it [27]. In the following, we only
show corrected correlation functions.

Self-affine properties. – The spatial part of the correlation function is shown in fig. 2
for the five different H concentrations. The curves are shifted by a factor of 1.5 for different
amounts of impurities for clarity. As can be seen from the figure, in spite of the very different
visual appearance of the flux landscape in fig. 1, all of the curves follow the same power law
with an exponent of α = 0.88(3). This is in reasonable agreement with a determination of the
roughness of the flux fronts in an untreated Nb film by Vlasko-Vlasov et al. [4]; however, note
that here we determined the exponents of the full two-dimensional flux landscape. The rough
flux front in combination with the fulfilment of a scaling relation between the fractal dimension
and the roughness exponent was there taken as evidence for SOC [4]. Comparing our values
of the roughness exponent value with the fractal dimensions of the avalanches at different H
concentrations discussed in [17] (decreasing from D = 2.75(5) for the untreated sample to
D = 2.25(5) for high amounts of quenched disorder), we find the scaling relation D = dB + α
to be fulfilled for all H. Here dB is the fractal dimension of the avalanche area, which we
determine using a boxcounting method and changes from dB = 1.8(1) to dB = 1.4(1) with
increasing H concentration. Thus, despite the absence of SOC in part of the H-concentration

Fig. 2 – Radial average of the spatial correlation functions for different H loading pressures. The
curves are shifted by a factor of 1.5 for different pressures for clarity. The correlation functions all
follow a power law with an exponent α = 0.88(3) indicated by the solid line. This indicates that
in spite of the different appearance of the flux landscapes on increasing the amount of quenched
disorder, the roughness properties are unchanged. Thus a spatial scaling analysis cannot be used
to characterise the appearance of SOC: we showed previously [17] that over this range of doping a
transition from non-SOC to SOC behaviour takes place.
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Fig. 3 – Temporal correlation functions for all of the different H loading pressures. The curves are
shifted by a factor of 1.5 for different pressures for clarity. As can be seen, the exponent of the power
law increases from β = 0.47 (dotted line) to β = 0.80 (dashed line) with increasing disorder. This
difference is due to the presence of a SOC state in the samples with higher disorder and hence a
different dynamics of the flux landscape. This is corroborated by the levelling off of the dynamic
exponent (fig. 4) at the H loading pressures where finite-size scaling of the avalanches is observed.

range (as found from the avalanche behaviour [17]) we do find the same roughness exponent
and fulfillment of the relation D = dB + α over the whole range. Hence these latter two
criteria cannot be used to unequivocally decide that a system is SOC.

When looking at the temporal correlation functions shown in fig. 3 however, one does
observe a clear dependence of the growth exponent on the H concentration. In the untreated
sample, β = 0.47(3), whereas at higher H the value saturates at β = 0.80(3). This clearly
indicates that the differences between the SOC and non-SOC states can be seen in the dy-
namics of the flux landscape. As a matter of fact, determining the dynamic exponent, defined
as z = α/β [20] and shown in fig. 4, one observes a leveling off of the value of z at higher H
concentrations, where also finite-size scaling and hence SOC is observed (see below). Further-
more, the asymptotic value is close to z = 1, which in directed percolation depinning (DPD)
models corresponds to the critical state, i.e. the state at which the system is marginally
stable [20, 28]. This shows that a determination of the dynamic exponent is essential to be
able to conclude that a system is SOC from its roughness properties.

Avalanche properties. – The avalanche size distributions have been previously determined
for different H concentrations. This has been achieved by taking difference images between
two field steps and subsequently identifying the individual avalanches [17]. The magnetic
flux change in each avalanche was determined from an integral of the change in Bz over
the area of the avalanche. From a finite-size scaling collapse of the data, it was possible
to determine values for the fractal dimension of the avalanches, D, and the avalanche size
distribution exponent, τ . In case there was no finite-size scaling, these quantities could still
be determined from the cut-off size and the distribution at small avalanche sizes, respectively.
Thus we have a dependence of the characteristic exponents with impurity density as well as
a quality of the finite-size scaling collapse. In fig. 4, we also show the H-dependence of the
avalanche size exponent. As can be seen from the figure, the exponent determined reaches
its high disorder limit roughly at the point where good finite-size scaling collapse is observed.
Furthermore, it can be seen that the dynamic exponent saturates at the same values of the H
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Fig. 4 – The avalanche size distribution exponent, τ (open squares) and the dynamic exponent, z
(full circles) as a function of H loading pressure. The values of the exponents decrease with increasing
disorder. At low disorder, where no scaling collapse can be obtained, the avalanche exponent is
obtained from a collapse at small avalanche size. The shaded region of H loading pressures gives the
region where a scaling collapse becomes possible indicating the transition to SOC. This happens at
the same H pressures where the avalanche exponent becomes “universal” (i.e. independent of the
amount of disorder) and the dynamic exponent levels off at a value close to 1, which is the value
expected for the critical state in a DPD model.

pressure. This indicates that the transition to SOC can be determined from the value of the
dynamic exponent z or from scaling collapse of the avalanche size distribution, but not from
the roughness exponent α alone.

Conclusions. – In conclusion, we have shown that the vortex landscape in H-doped Nb
films is self-affine with power law scaling both in space and time. The spatial roughness is
found to be independent of the H content of the sample, whereas the temporal roughness
shows a marked H-dependence. In combination with the fact that SOC as given by the
finite-size scaling collapse of the avalanche sizes can only be observed at higher levels of
H-induced disorder [17], this implies that the spatial roughness by itself cannot be used as a
criterion for SOC. When studying the time correlation function, however, and therefore the
dynamic exponent, a transition to a critical state with H doping can be observed. Comparing
this finding with the characterisation of the avalanche size distributions, one finds that the
transition to finite-size scaling collapse happens at the same H loading pressure as the leveling
off of the dynamic exponent. Furthermore, the value at which the dynamic exponent levels off
is that obtained in the DPD model for the critical point itself [20,28]. Thus we conclude that
the presence of the SOC state can be inferred from a determination of the dynamic exponent
as well as the finite-size scaling of the avalanche size distribution.
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