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Observation of Anderson localization of light
in three dimensions

Christof M. Aegerter,* Martin Störzer, Susanne Fiebig, Wolfgang Bührer, and Georg Maret

Fachbereich Physik, University of Konstanz, Box M621, 78457 Konstanz, Germany
*Corresponding author: christof.aegerter@uni-konstanz.de

Received October 6, 2006; revised April 4, 2007; accepted April 16, 2007;
posted April 20, 2007 (Doc. ID 75790); published August 8, 2007

Using time-resolved transmission measurements, we have found indications of Anderson localization of light in
bulk three-dimensional systems. The observed deviation from classical diffusion is in good accord with theo-
retical predictions of localization and cannot be explained by absorption or experimental artifacts such as
stratification, fluorescence, or background illumination. Moreover, we show that in our samples the control
parameter is given by the mean free path times the wavenumber as required by the Ioffe–Regel criterion. This
is in contrast to quasi-one-dimensional systems that were studied with microwaves. There, the control param-
eter is related to the number of modes inside a waveguide, and deviations from classical diffusion are possible
due to a small number of modes. © 2007 Optical Society of America
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. INTRODUCTION
he quest for an experimental verification of Anderson lo-
alization [1] of light has been a long and controversial
ne. Because detailed theories for localization in finite
amples are exceedingly difficult, the experimental signa-
ures of localization are somewhat ambivalent. The initial
redictions by Anderson [2] in 1985 and John [3] in 1984
f an exponentially decreased transmission in the local-
zed state and the scaling of the diffusion coefficient with
ample thickness have both been used as characteristic
easures of the onset of localization [4,5]. Such measures

oncerning the average properties of photons can, how-
ver, also be obtained from effects acting on all scatterers
ithout taking into account localization. For instance ab-

orption can similarly lead to an exponential decrease of
he total transmission of a sample [6–8]. The prediction of
ocalization theory can be compared to measurements of
otal transmission only if the absorption length is known
rom an independent determination. Similarly, a decrease
n the diffusion coefficient can be obtained by resonant
cattering from particles that are of size comparable with
he wave length [9]. In order to check for this, the trans-
ort speed of photons has to be determined independently.
A clearcut signal of localization thus has to take into

ccount the properties of paths leading to localization,
.e., that they are multiple-scattering paths with a high
robability of forming closed loops. This can be achieved
ither by time-resolved measurements (of transmission
10] or reflection [11]) or by studying the fluctuations in
ransmission. Both of these measures have been used to
haracterize the transmission of microwaves through
uasi-one-dimensional, disordered waveguides [8,12].
ue to the restricted geometry of these waveguides, the

ontrol parameter that needs to be varied to observe lo-
alization is the dimensionless conductance, g, which is
elated to the number of modes in the waveguide. This is
asically a measure of the inverse probability of different
1084-7529/07/100A23-5/$15.00 © 2
hoton paths crossing inside the sample, which in this re-
tricted geometry is naturally small. The fact that the di-
ensionless conductance is small leads to the presence of

prelocalized” states [13], where interference on multiply
rossed paths is important [14]. These states then lead to
eviations from classical diffusion, which have also been
ound in theoretical investigations of the problem [14,15].

In bulk systems, however, the control parameter of lo-
alization is given by the product of the wavenumber k
nd the mean free path l* as introduced by Ioffe and Regel
16]. This parameter can be reasonably high for the quasi-
ne-dimensional samples studied in microwave experi-
ents. This implies that in spite of the deviations from

lassical diffusion due to prelocalized states discussed
bove, the transition to localization as given by the Ioffe–
egel criterion has not yet been passed.
Here we present time-resolved measurements of trans-
ission at optical wavelengths [10] of bulk samples (typi-

al dimensions are 105�105�104 in units of l*) [17]. This
mplies that while kl* is low in our samples (varying be-
ween 2.5 and 30), the dimensionless conductance is huge
ith g�104 [18,19]. Thus the situation cannot be com-
ared to that of the quasi-one-dimensional experiments
sing microwaves. In our samples, any deviations from
lassical diffusion should not be due to prelocalized states
ut rather to localization on very long multiple-scattering
oops intersecting with themselves. This is also in good
ccord with recent theories of localization in open, three-
imensional media [20], where deviations from the classi-
al picture set in only at the threshold to strong localiza-
ion. The results obtained in [20] are also in qualitative
greement with our data in that samples below the local-
zation threshold show a subexponential decrease of
ransmission, which sets in only at long times. For a
uantitative comparison, however, this theory is not suit-
ble, as calculations describing our very thick samples
ould be much too time consuming [21]. Therefore, our
007 Optical Society of America
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ransmission spectra are described by a phenomenologi-
al theory incorporating a temporally varying diffusion
oefficient [22,23], where the diffusion coefficient de-
reases in inverse proportion to the time after a certain
ime connected to the localization length [24]. Finally, we
xclude a number of experimental artifacts that could
roduce similar deviations from a diffusive pulse.

. EXPERIMENTAL SETUP
ur samples consist of commercially available powders of
iO2 with an average grain size ranging from 220 to
40 nm and a polydispersity of �20%. These powders are
sually used as the basis of pigments for white paint and
re obtained from DuPont chemical company. At the
avelength of the experiment, 590 nm, TiO2 has a high

efractive index of 2.73, such that these samples have a
ery small transport mean free path l*. To achieve this,
he powders are packed between two glass plates to a
acking fraction of �40−45% [17].
In order to experimentally determine the turbidity of

he samples, the samples are characterized by coherent
ackscattering. Due to weak localization effects, the re-
ected light shows a twofold enhancement in the backdi-
ection [25,26]. This enhancement decays back to the in-
oherent background over a scale given by the inverse of
l* [27], thus providing a direct measure of the turbidity.
n strongly scattering samples, such as ours, the effective
efractive index of the medium [28] has to be taken into
ccount as well. Due to the jump in refractive index at the
ample boundary, reflections occur, which lead to a nar-
owing of the enhancement. This correction has been cal-
ulated [29], and leads to a shift in the values of kl* ob-
ained from backscattering measurements of roughly a
actor of two depending on the packing fraction of the
ample. In order to carry out this correction, the effective
efractive index has to be known, which we calculate from
he energy coherent potential approximation [30] given
he size and packing fraction of each sample. The angle-
esolved intensity was measured using a custom designed
etup consisting of 256 sensitive photodiodes placed at
xed angles in an arc of 1.2 m diameter. The placement of
he photodiodes is such that in the central part ���10° �
he resolution is highest �0.15° � and decreases toward the
uter angles. Therefore the setup allows a study of angles
p to 85° [31,32].
After the samples’ turbidity has been characterized, we
easure their time-resolved transmission. This is done

sing a pulsed dye laser capable of delivering pulses of a
idth of �20 ps at a repetition rate of a few megahertz.
ue to the dye used (Rhodamin 6G), we are able to

hange the lasing wavelength continuously between 570
nd 620 nm. In the following, however, the wavelength is
ept constant at 590 nm [17]. The time-of-flight spectra of
he different samples are then obtained by passing a
ulse through the sample after which it is recorded by a
hotomultiplier (PM). The signal from the PM starts a
lock, which is subsequently stopped by the signal from a
elayed reference pulse that has been extracted from the
ulse just before the sample. A histogram of many of these
ime differences then gives a determination of the time-
f-flight distribution, which is directly related to the path-
ength distribution of diffusive paths through the
amples, which can be calculated analytically [10]. At
ong times, this yields an exponential decrease of the
ransmission

T�t� � �D�t�

D0
�2

exp�− ��2D�t�

L2 +
1

�abs
�t� , �1�

here the characteristic time scale is given by the thick-
ess L, the diffusion coefficient D, and the absorption
ime �abs.

Due to the presence of afterpulses, a nonsymmetric
ulse shape, electronic broadening, and background noise
n the system response, the time-of-flight distributions
ave to be deconvoluted by the system response in the ab-
ence of a sample. The results thus obtained correspond
irectly to the calculated path-length distribution that as-
ume an incident delta-shaped pulse.

The simultaneous measurement of kl* using coherent
ackscattering and the diffusion coefficient D from time-
f-flight measurements also allows an experimental de-
ermination of the transport velocity vT. Thus a test of the
nfluence of resonance scattering on the results is possible
s well [33].

. RESULTS
n contrast to the theoretical prediction of Eq. (1) for clas-
ical diffusion, the time-of-flight distributions for a
ample with kl*=2.5 shows a clearly nonexponential de-
ay at long times; see Fig. 1. While this is consistent with
time dependence of D as discussed below, some proper-

ies of the experiment might also give rise to a long-time
ail. Such artifacts have to be excluded before discussing
he implications of the data on localization. TiO2 is known
o show fluorescence when strongly compressed [34]. Thus
he small amount of photons in this tail might arise from
uorescence. We have checked for this by placing a filter
uppressing wavelengths higher than 590 nm between

ig. 1. (Color online) Time resolved transmission through a lo-
alizing sample. The onset of localization can be seen from the
onexponential tail in the distribution at long times giving rise
o deviations from classical diffusion (dotted curve). This tail is
ot due to fluorescence of the sample, as can be checked by plac-

ng a filter behind the sample that suppresses photons of wave-
ength higher than that of the illuminating laser. Moreover, the
ail is well described by a time-dependent diffusion coefficient,
ecreasing with time as 1/ t, as required for localization (dashed
urve).
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he sample and the PM. The result of this is shown by the
lack curve in Fig. 1, which is indistinguishable from the
esult without the presence of a filter. Fluorescence can
herefore be excluded. On the other hand, a layering in
he sample preparation might lead to a distribution of
alues of l* through the sample. This in turn would give
ise to a nonexponential decay of the time-resolved trans-
ission. In order to check for this, we have illuminated

he sample from the front and the back, respectively. If
he nonexponential decay observed in front illumination
see Fig. 1) were due to such layering, a flipped sample
ould give rise to a faster than exponential decrease.
oth types of illumination, however, give the same result,

hus ruling out layering as the source of the nonexponen-
ial decay. Another difficulty might be the presence of
ackground illumination, which starts to be important in
urbid samples, where transmitted intensity is decreased.
owever, when we studied the same sample at different

hicknesses, such that the transmitted intensity was
hanged by a factor of ten, no difference in the long-time
ail was observed. This implies that background illumina-
ion does not play a role in the deviation from classical
iffusion in the turbid samples. In addition, a reduction in
ransport speed due to resonance scattering has been
hown to influence the determination of D from time-of-
ight measurements [5,9]. However, in our case, we di-
ectly determine vT as discussed above, which shows that
or the sample with the strongest deviation from classical
iffusion, vT is well described by the effective refractive
ndex [33]. Finally, absorption needs to be treated care-
ully when one is studying localization effects. However,
bsorption would only lead to an additional exponential
ecrease of the time-resolved transmission and could not
xplain the nonexponential tail. In addition, we can deter-
ine the absorption length La=	D�abs, which does not

how a systematic dependence on kl*, as shown in Fig. 2.
The deviations from classical diffusion, in contrast,

how a strong increase with decreasing kl*, indicating a

ig. 2. (Color online) The inverse absorption length, La, does
ot show a systematic dependence on kl*, in contrast to the lo-
alization length. This shows that the deviations from classical
iffusion are not associated with absorption. However, the fits to
he time-resolved transmission data make an explicit determina-
ion of the absorption length possible, such that the exponential
ecay of the total transmission can be compared with that pre-
icted solely from absorption.
hase transition as required by the Ioffe–Regel criterion
16]. This can be seen in Fig. 3, where we show the aver-
ge of the ratio of the data to a fit using classical diffusion
heory (dotted curve in Fig. 1) as a function of kl*. This
hows a marked increase starting at kl* values around
–5. In addition, the figure shows a determination of the
ocalization length, Lloc, which shows the same qualita-
ive behavior. The localization length is determined from
fit to the data using a temporally varying diffusion co-

fficient [22] (dashed curve in Fig. 1). As has also been
ound by simulations [35], in the case of localization the
ean square displacement, 
r2�, of photons saturates af-

er a characteristic time, such that the effective D be-
omes proportional to 1/ t. This has been added to the be-
avior in Eq. (1), where the localization length is
etermined by the diffusion coefficient at early times and
he time scale where the time dependence sets in, �loc, i.e.

loc=	D�loc [24]. In order to capture the behavior of both
lassical diffusion �
r2�� t� and localized states �
r2�
const.�, we have fitted the data with a mean square dis-
lacement varying as t−�, where the exponent � is a fit-
ing parameter [24]. The resulting exponent for all of the
amples investigated is shown in Fig. 4. As can be seen,
he behavior changes from classical at high kl* (with � �
) to localized at kl* below 4 (with � � 0). Right at the
ransition, it can even be seen that the prediction from
lassical scaling theory [21,36] of � � 2/3 is consistent
ith the data.
Finally, we have performed measurements of static

ransmissions on our most localizing sample as well as on
classical sample. The result of this is shown in Fig. 5,
here a nearly exponential decrease of the transmitted

ntensity can be seen in both cases. Indeed, localization
heory predicts an exponential decrease of the static
ransmission in the localized state, in contrast to the 1/L
ependence of a purely diffusive sample (dotted curves in
ig. 5). However, this measurement alone cannot be seen
s an indication of localization in our sample, since ab-
orption will similarly lead to an exponential decrease in
ntensity. However, there will be a difference in the char-

ig. 3. (Color online) Inverse localization length as a function of
he control parameter kl* (open symbols) [24]. This physical mea-
ure is in good agreement with an empirical measure of the de-
iation of the data from classical diffusion, which can be obtained
rom averaging the ratio of the data to a classical fit over a range
rom tmax to 3tmax (solid symbols) [17].
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cteristic length scales of absorption and localization.
herefore, we have to compare our static transmission
easurements with diffusion theory including absorp-

ion, where the absorption length has been determined
rom the time-resolved measurements as discussed above.
his is shown by the dashed curves in Fig. 5, where the
haded area indicates the error in the determination of
he absorption length from the time-resolved measure-
ents. As can be seen, this describes the classical sample

ery well, while still greatly overestimating the transmis-
ion in the localizing case, in contradiction with the data.

full description of the measurements is possible only
hen the localization length as determined from the time-
f-flight measurements is also included. This yields the
ull curves in Fig. 5(b), which completely describe the
ata without any adjustable parameters over twelve de-
ades in intensity.

. CONCLUSION
n conclusion, we have shown that thick samples with
ery small values of kl* show increasing deviations from
iffusive transport at long times (see Fig. 1). These devia-
ions go together with the decrease of the localization
ength below the sample thickness, as obtained from a
emporally varying diffusion coefficient (see Fig. 3). The
nset of such a decreasing diffusion coefficient at long
imes can be associated with the transition to localization
f waves, which takes place at kl*�4 (see Fig. 4). In ad-
ition, these time-resolved measurements allow a deter-
ination of the absorption length, which does not show

ny systematic dependence on kl* (see Fig. 2), such that
hese deviations cannot be explained by effects of absorp-
ion. Moreover, other experimental effects, such as fluo-
escence, layering, a reduction in transport velocity, and
ackground illumination can also be ruled out as the
ause of the long-time tail in the time-of-flight distribu-
ions. Finally, a determination of the absorption length al-
ows a quantification of static transmission measure-

ig. 4. The time dependence of the width of the photon cloud
an be described by an exponent, �, which is unity for classical
iffusion and zero in the case of localization [23]. Just at the
ransition, a value of �=2/3 is predicted from one-parameter
caling theory [36]. From a fit to the time-resolved transmission
easurements for different kl*, the transition to localization can

e seen to take place at a value of kl*�4.
ents, where an exponential decrease faster than the one
mplied by absorption is observed (see Fig. 5). The dis-
repancy is well accounted for by introducing the localiza-
ion length, also determined from time-resolved measure-
ents [24]. Thus, the static transmission can be described
ithout any adjustable parameters using localization

heory over 12 orders of magnitude, which strongly sup-
orts the conclusion that we have indeed observed Ander-
on localization of visible light in three dimensions.
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