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Abstract

Text normalization is the task of mapping non-canonical language, typical of speech transcription
and computer-mediated communication, to a standardized writing. This task is especially important
for languages such as Swiss German, with strong regional variation and no written standard. In this
paper, we propose a novel solution for normalizing Swiss German WhatsApp messages using the
encoder-decoder neural machine translation (NMT) framework. We enhance the performance of a
plain character-level NMT model with the integration of a word-level language model and linguistic
features (POS tags). The two components are intended to improve the performance by addressing two
specific issues: the former is intended to improve the fluency of the predicted sequences, whereas the
latter aims at resolving cases of word-level ambiguity. Our systematic comparison shows that our
proposed solution results in an improvement over a plain NMT system and also over a comparable
character-level statistical machine translation (CSMT) system, considered the state of the art in this
task till recently. We perform a thorough analysis of the compared systems’ output, showing that our
two components produce indeed the intended, complementary improvements.

* This research is funded by the Swiss National Science Foundation, project "What’s Up, Switzer-
land? Language, Individuals and Ideologies in mobile messaging” (Sinergia: CRSII1_160714).
We would like to thank Helmut Schmid for kindly providing us with the TreeTagger parameter
file.
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1 Introduction

The German-speaking part of Switzerland is characterized by a phenomenon known as
diglossia, i.e. two different varieties of the same language are used within a community
in different social situations. One variety is known as standard Swiss German, that is the
variety of standard German that is accepted as the norm in Switzerland. It is used in most
written contexts (literature, newspapers, private correspondence, official documents), in
formal and official spoken contexts (education, parliament speeches) and in interactions
with foreigners. The second variety, that is the dialect, is known as Swiss German and is
used in everyday life, within the family as well as in most radio and television programs.’
Since Swiss German does not have a standardized orthography, it is rarely used in writ-
ten contexts. However, nowadays we observe an increasing use of the dialect in written
computer-mediated communication (CMC). This phenomenon has multiple and interest-
ing repercussions for a low-resource language like Swiss German, as it makes valuable
material available for natural language processing (NLP) tasks. The NLP pipeline typi-
cally requires standardized text as input. Given the non-standard nature of written Swiss
German, and the high degree of variation that characterizes it, the need for text normal-
ization, i.e. mapping different variants of the same word type to a single string, becomes
immediately evident.

Several factors contribute to the high degree of variation of the source text. Firstly, the
lack of a standardized spelling is further complicated by the strong regional variation and
the numerous local variants of the same word. As a result, the word viel (‘much’) can
appear as viel, viil, vill, viu, and many other potential variations. Secondly, CMC is char-
acterized by various peculiarities, such as vowel reduplication and unconventional abbre-
viations, which increase variation.

In this paper we tackle the issue of enhancing the performance of neural methods in
the task of text normalization. We work with the neural framework that proved most suc-
cessful in machine translation — a combination of two recurrent neural networks known
as the encoder-decoder architecture with attention mechanism — and we enrich the basic
character-level NMT model with modifications that allow us to overcome the limitation of
having a small training set. The solution we propose is a combination of two mechanisms,
that addresses two challenges related to normalization of written Swiss German.

The first challenge is due to the fact that the plain NMT model operates at the character
level, and has no notion of what a word is. Therefore, it might produce an output that,
based on the train set, is not a proper word, despite being a likely sequence of characters.
Following Gulcehre et al. (2016), Ruzsics and SamardZi¢ (2017), and Lusetti et al. (2018),
our first modification consists in including an additional language model at the decoding
stage. The score of an integrated word-level language model is combined with the one pro-
duced by the basic character-level NMT model by means of a synchronization mechanism.
We expect the additional word-level language model to contribute to a better fluency of the
output.

The second challenge is due to the ambiguity that arises when one source word is nor-
malized in two or more different ways in the train set. In order to address this issue, we

! See Rash (1998), among other sources, for a comprehensive survey of Swiss German.
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investigate whether NMT can benefit from the integration of additional linguistic features
by adding POS tags to the input of the NMT model. Knowing the POS associated with
a word undoubtedly provides an important cue as to which the appropriate normalization
form might be. For this purpose, we train a POS tagger that is capable of tagging Swiss
German WhatsApp messages.

Moreover, the combination of the two approaches is expected to work in a complemen-
tary manner, with the result of jointly improving the fluency of the output and resolving
cases of ambiguity.

Our results show that, in the task of normalizing Swiss German WhatsApp messages,
the approach we describe achieves a better performance than the current state-of-the-art
CSMT methods and the plain NMT model.

Although the aim of this work is to normalize WhatsApp messages written in Swiss
German, we believe that the methods we propose are highly flexible and portable, and can
thus be applied to other settings characterized by non-standard text.

2 Related Work

Since the introduction of neural methods to machine translation (Kalchbrenner and Blun-
som, 2013; Cho et al., 2014; Sutskever et al., 2014), various attempts have been made
to apply the new framework to the task of normalization. A recent shared task (Tjong
Kim Sang et al., 2017) allowed a direct comparison of CSMT with some neural meth-
ods, with CSMT still outperforming neural systems. Honnet et al. (2017) apply a neural
method embedded in other techniques. Bollmann and Sggaard (2016) report experiments
with deep, long short-term memory (LSTM) networks.

Our approach draws on the line of work known as the encoder-decoder framework. In
this framework, one recurrent neural network (RNN) encodes a sequence of symbols into a
fixed-length vector representation, and the other decodes the representation into an output
sequence of symbols. Following established approaches, we extend this basic framework
with the soft attention mechanism introduced by Bahdanau et al. (2014), that allows a
model to search for parts of a source sequence that are relevant to predicting a target sym-
bol.

Moreover, our work is closely related to approaches that implement a modification of the
encoder-decoder framework that allows to incorporate additional language model scores at
the decoding stage. Gulcehre et al. (2016) integrated a character-level language model into
an encoder-decoder framework to augment the parallel training data with additional mono-
lingual corpora on the target side. Adapting this framework to the task of morphological
segmentation, Ruzsics and Samardzi¢ (2017) introduced a “synchronization mechanism”
that allows to integrate language model scores at different levels: the basic encoder-decoder
component is trained on character sequences and the target-side language model compo-
nent is trained on the sequences of morphemes. Lusetti et al. (2018) applied this approach
to the task of text normalization, by integrating word-level scores of a language model on
top of the character-level neural normalization framework.

Linguistic features such as lemmas, morphological and syntactic information, and POS
tags have been used in an attempt to improve the performance of SMT (Koehn and
Hoang, 2007), resulting in factored machine translation models. Lemmatization can reduce
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data sparseness by relying on more general representations than surface forms of words,
whereas POS tags and syntactic dependency labels can help in disambiguation. Sennrich
and Haddow (2016) argue that NMT provides a more flexible mechanism for adding lin-
guistic information. In their approach, the embedding layer of an encoder-decoder model
with attention is generalized to support the inclusion of additional features by vector con-
catenation. When words are segmented into sub-word units, the feature value associated
with the entire word is copied to all its sub-word units. Similarly, our models incorporate
linguistic information in the form of POS tags, with the difference that an output unit is
produced by combining the POS feature with the current decoder hidden state and soft
attention context vector at decoding time. Since we use a character-level model, and thus
characters represent our sub-word units, we use the POS tag of a word for the prediction
of each one of its characters.

3 Our approach

In the following sections, we describe the NMT framework and the details of our adapta-
tions to the task of normalizing a corpus of Swiss German WhatsApp messages.

The normalization task can be formalized as a transformation of the input sequence of
characters to the output sequence of characters. For example, the input word viil (as well
as its variants, e.g. vill) has to be mapped to its normalized form viele ‘many’. Specifically
to the WUS corpus, most of the mapped sequences are pairs of single words (one-to-one
alignments) as shown in the first section of Table 1. There are also many contracted forms
corresponding to multiple normalized words (one-to-many alignments). These are typi-
cally verb forms or prepositions merged with subject and object clitics, as illustrated in
the second section of Table 1. The few cases of many-to-one alignments are due to typos
(a space instead of a character) and the lack of spelling conventions for Swiss German,
most noticeable in arbitrarily split compounds and separable verb particles. Finally, dif-
ferent combinations of the factors listed above can result in many-to-many mappings. The
examples of these more rare alignments are presented in the last two sections of Table 1.

In our approach, we combine two methods to adapt a basic NMT model to the normal-
ization task. The basic NMT system takes as an input the source form, e.g. viil ‘much’, and
learns a mapping to its normalized form viele. Our first method modifies the decoding stage
of the plain NMT system, that has been already pretrained for the task. Specifically, the ad-
vanced decoding mechanism integrates an additional language model (LM) pretrained on
the target side of the data. Such approach allows us to incorporate more target side data
and add more fluency to the NMT system output. This is achieved by guiding the NMT
generation process during decoding through synchronizing NMT and LM scores at word
boundaries. The advanced decoding process specifically targets the cases of one-to-many
alignments. In addition, it results in rescoring one-word hypotheses of the NMT system,
which occur in one-to-one alignment units. The setup of the plain NMT system and the
details of the decoding approach are described in Section 3.1.

In our second method we consider the integration of POS features to the neural system.
The NMT system with additional features learns how to transduce an input pair of a word
with its POS tag. For example, the system learns to map an input (/ziit, NN) to its normal-
ization Leute ‘people’ while the input with a different POS tag (Ziiit, VVFIN) should be
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Table 1. Examples of aligned token sequences in the WUS corpus.

alignment type  source form normalized form  English gloss POS
one-to-one viil viele much PIAT

vill viele much PIAT

liitit Leute people NN

liidit lauten to ring VVFIN

vor vor before; in front of APPR
one-to-many vor von der from the; of the APPR+ART

hdmmers haben wir es have we it VAFIN+PPER+PPER
many-to-one b esser besser better ADJD

aweg riise wegreissen tear away; rip off ~ VVINF

flugziig wrack  Flugzeugwrack plane wreck NN
many-to-many  dus e du es you [verb] it PPER+PPER

transformed to the form léiuten ‘to ring’. The second setup with additional POS features is
described in Section 3.2.

While each of the proposed enhancements to the plain NMT system targets specific phe-
nomena in the corpus - fluency and, especially, one-to-many alignments are targeted by the
advanced decoding, whereas the additional POS features address the problem of ambigu-
ous words - the combination of the two approaches is expected to work complementary in
the cases which combine both phenomena. For example, the input word vor can be either
normalized as the preposition vor (‘before’; ‘in front of’) or as a preposition merged with
an article von der ‘from the’.

3.1 NMT with LM

First, we describe the the basic configuration of the NMT system, an encoder-decoder
model with soft attention (Bahdanau et al., 2014; Luong et al., 2015), that we use for all
our neural experiments. In order to formalize our task, we define two vocabulary sets, X
consisting of the character symbols that form the source sequences (second column in Table
1) and 3, of the character symbols that form the normalized sequences (third column in
Table 1). Then, our task is to learn a mapping from an original character sequence x € 3*
to its normalized form y € X7 .

The model transforms the input sequence into a sequence of hidden states. The hidden
state is a fixed-dimensional vector representation for each character that encodes the char-
acter itself and the signal from its character-level context. The system learns this transfor-
mation with a bidirectional encoder which consists of a forward and backward Recurrent
Neural Network (RNN). The forward RNN reads the input sequence of embedding charac-
ter vectors X1, ..., Xy, in forward direction and encodes them into a sequence of vectors
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representing forward hidden states:

- —

ht:f(ht—lvxt)a t:17-~-anm (1)
while the backward RNN reads the sequence in the opposite direction and produces back-
ward hidden states:

zt:f(itfhxt)a t=mng,...,1 (2)
where f stands for LSTM (Hochreiter and Schmidhuber, 1997). The hidden state h; for
ei():h time step is obtained by concatenating a forward and a backward state, so that h, =

[ h ts it] .
The decoder RNN transforms the internal fixed-length input representation into a vari-

able length output sequence y = (y1, .. ., ¥n, ). At each prediction step ¢, the decoder reads
the previous output y;_; and outputs a hidden state representation s;:
St:f(st—l,thl)a tzl?"'any (3)

The conditional probability over output characters is modeled at each prediction step ¢
as a function of the current decoder hidden state s; and the current context vector c;:

PWelyr, - ye—1,2) = g(s¢, ¢) 4)

where g is a concatenation layer followed by a softmax layer (Luong et al., 2015).
The context vector c; is computed at each step from the encoded input as a weighted
sum of the hidden states:

Ny
Cy = Z O[tkhk (5)
k=1

The weights are calculated by an alignment model which scores how much attention should
be given to the inputs around position k to generate the output at position ¢:

Qg = ¢(se, hy) (6)

where ¢ is a feed-forward neural network (Luong et al., 2015). Therefore, the model learns
the alignment between input and output jointly with transduction using a deterministic
function. The illustration of the model architecture is provided in Figure 1.

The training objective is to maximize the conditional log-likelihood of the training cor-
pus:

1 i
L:N(Z);lng(yt|y1""7yt—17x) (7)
z,y) t=

where N is the number of training pairs (z, y).

Integrating Language Models. In this section, we describe the synchronized decoding
mechanism for integrating a LM into the NMT system (Ruzsics and SamardZzi¢, 2017).
Before the integration, we assume that an NMT and a LM are trained separately. The NMT
model is trained on character sequences in a parallel corpus consisting of aligned source
words and their normalized forms (as shown in Table 1). It learns local character transfor-
mations and implicitly includes a LM over the target side characters through the decoder
RNN component. We augment this model with an additional LM, separately trained over
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Fig. 1. Basic NMT architecture.

the target side of the corpus. We consider a setup where the LM is trained over words
from the target-side of the train set, which we augment with extra target data.? Therefore,
the additional LM brings the frequency signal from higher level units of the target data
(words), while the NMT system operates on characters. In the following, we describe how
the synchronized decoding allows us to fuse the scores of both components, NMT and LM,
at the decoding stage.

The synchronized decoding approach relies on a beam search to find the prediction steps
where the scores of the different model components are combined. The beam search is run
at two levels of granularity. First, it produces the output sequence hypotheses (candidates)
at the character level using NMT scores until the time step s;, where K best hypotheses
{(y1y2 - ys1)'}sye € i = 1,..., K end with a word boundary symbol.> We consider
two boundary symbol types: space, which marks the end of a word in a partial predicted
sequence, and a special eow symbol, which marks the end of a completed predicted se-
quence. The step s; is the first synchronization step where we re-score the normalization
hypotheses with a weighted sum of the NMT score and the LM score:

IOgP(ysﬂyl, e 7ysl—17$) ==
=logpnmr(Yst|yrs - Ysi—1,2) + applogprar(yi, .-, ys1)  (8)

At this step, y1, . . ., Ys1 1s considered a sequence of s1 characters by the NMT system, and

2 The synchronized decoding framework allows integration of LM trained on different levels (char-
acters versus words), we select the setting which is proven to be the most optimal for the normal-
ization of Swiss German (Lusetti et al., 2018).

3 Some of the best hypotheses can have length shorter than s, but we assume they are of the same
length for the ease of notation.
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one word by the LM. After the first synchronization point we continue to produce the re-
scored hypotheses using NMT scores until the next synchronization point. The search pro-
cess ends at the synchronization point where all the hypotheses are complete predictions,
i.e. end with the eow symbol. The parameter o, ) is optimized with MERT algorithm on
the development data.

The decoding process scores the hypotheses at two levels: normally working at the char-
acter level with NMT scores and adding the LM scores only when it hits a boundary point
for all the hypothesis in the beam. In this way, the LM score helps to evaluate how proba-
ble the last generated word is based on the predicted word history, that is the sequence of
words generated at the previous synchronization time steps.

3.2 NMT with POS Tags as Features

We start with the task reformulation for the setting where we use additional features in the
form of POS tags. In addition to the two vocabularies that contain the source ¥ and target
>, characters, we thus have a vocabulary of the possible POS tags ¥ (third column in
Table 1). Our task is to learn a mapping from an input pair (x, f, = f1 + ... + fx) of a
source character sequence x € X and its POS feature f, (possibly consisting of one or
more tags f; € Xy) to its normalized form y € X7 . We embed the POS tags f; € ¥y into
their vector representations f;, which are learned by the system. In cases where the feature
input is a composition, i.e. it consists of several POS tags f1 + ... + fx, we use an average
of the corresponding vector embeddings (f; + ... + fx) /n as representation.

We then adapt the plain NMT system and feed the POS features, together with the cur-
rent decoder hidden state s; and the current context vector c, in order to predict the next
output character as follows :

p(yt|y17"'7yt717$):g(stactvfz) (9)

The architecture of the model is illustrated in Figure 2. Since the decoder operates at the
character level, each prediction step ¢ corresponds to the output of one character. Therefore,
the POS feature f, associated with the entire word z is used for the prediction of each one
of its characters ;.

4 Data and Preprocessing

The data for our experiments comes from manually normalized Swiss German corpora:*

e WUS set is a corpus of WhatsApp messages (Stark et al., 2014; Ueberwasser and
Stark, 2017). The entire collection contains 763,650 messages in different languages
spoken in Switzerland. A portion of the data, 5,345 messages in Swiss German, was
selected for manual normalization in order to provide a gold standard for automatic
normalization. We use this manually annotated portion (a total of 54,202 alignment
units) as our main dataset. Table 1 in Section 3 shows examples of alignment units
in the corpus.

4 The dataset used in our experiments can be provided on request. Please contact the authors.

Cambridge University Press

Page 8 of 25



Page 9 of 25

Natural Language Engineering

Neural Text Normalization with Adapted Decoding and PoS Features 9

v o n d e r

Qutput
|

Decoder

Attention
Mechanism

Encoder

v o r APPR+ART

Input

Fig. 2. NMT with POS tags as features.

e SMS set is a corpus of SMS messages, again in different languages spoken in
Switzerland (Stark et al., 2015). This is a smaller corpus entirely manually normal-
ized. The Swiss German portion contains 10,674 messages. We use this set (a total
of 262,494 alignment units) as additional training data, as described in more detail
below.

All the messages in our dataset are manually normalized using the same web annotation
tool and following the same guidelines (Ruef and Ueberwasser, 2013). This normalization
process implies a monotonic alignment between the source tokens and the normalized ones.

One peculiarity of the WUS corpus is, unsurprisingly given the source of the
texts, the frequent use of emojis. These are represented in the corpus as a se-
quence of characters describing the symbol. For example, the emoji © is rendered as
emojiQsmilingFaceWithOpenMouth. This choice was made by the creators of the corpus
to allow users of a query interface to search for emojis by means of regular expressions.

Our task is to normalize Swiss German WhatsApp messages. In order to train our mod-
els, we split the randomly shuffled WUS corpus in 80% training, 10% development and
10% test set, and use these same splits for all our experiments. The training set contains
43,798 parallel units, the test set 5,043 units, the development set 5,361 units. For the ex-
periments where we use additional target data, we add 262,494 target sequences of the
SMS corpus. This results in a total of 306,292 units for the extended target WUS+SMS
data.

4.1 POS Tagging

In the following, we describe our procedure for creating the tagged version of the WUS
corpus.
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We use a TreeTagger® (Schmid, 1994) parameter file, trained on the manually normal-
ized forms of the German SMS corpus using a lexicon that combines two sources: the same
normalized forms of the German SMS corpus; and a general lexicon from the German cor-
pus used for the standard German TreeTagger parameter file. The German SMS corpus
was then tagged using this adapted TreeTagger parameter file and an additional lexicon
that covers remaining unknown words, typically geographic named entities, loanwords and
proper nouns. The STTS tagset® was used, with the additional tag PTKINF for go, goge,
and other forms of infinitive particles often encountered in Swiss German dialects.

First, we create a silver standard of the tagged WUS corpus: we assign a tag to each item
(input word, normalized form) by tagging the normalized form with the adapted TreeTag-
ger. We use this version of the tagger since it is tailored for the Swiss German corpus and
manually adapted to maximize its coverage. In a second step, we project those tags from
the normalized forms onto the corresponding source forms, and train a new model with the
BTagger” (Gesmundo and Samardzi¢, 2012) on the train portion of the WUS corpus. Since
we cannot reproduce the adaptation procedure for the TreeTagger, we opt for the BTagger,
which also represents a more modern approach and yields systematically better results. Fi-
nally, we tag the development and test set using the pretrained BTagger. We have tested the
performance of the BTagger by comparing its output to the silver standard, which resulted
in 90.30% and 90.67% accuracy on the test and development sets, respectively.

5 Experiments

To assess how suitable our proposed methods are for the text normalization task, we de-
signed experiments for a systematic comparison of their performance. We consider two
experimental settings, with and without POS tags. For each setup, we include a setting for
synchronized decoding with an additional language model trained on the target side of the
data. In the following, we introduce the details of the experimental setup.

For the experiments without POS tags, we run a neural model in two settings: in
its plain form of encoder-decoder with attention mechanism (NMT) and in a combina-
tion with an additional language model (NMT+LMwus+sms:word). The language model
LMwus+sms:word is trained over words using the target side of the two datasets, i.e. the
concatenation of the train part of the WUS corpus with the SMS corpus (WUS+SMS).

Our basic configuration for the experiments with POS tags consists of the follow-
ing steps: 1) training a POS tagger model using the training portion of the corpus an-
notated with POS tags (silver standard, as explained in Section 4.1; 2) using the pre-
trained tagger to predict POS tags on the development and test portions of the corpus;
3) training an NMT model where POS tags are used as features. Therefore, at test time
the neural model has only access to the predicted tags. As in the experiments without
POS tags, we use two settings: plain form (NMT+POS) and with advanced decoding
(NMT+POS+LMwus+sms:word).

Shttp://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
6http://www.ims.unifstuttgart.de/forschung/ressourcen/lexika/
TagSets/stts-table.html

"https://github.com/agesmundo/BTagger
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All neural models were implemented using DyNet, a flexible neural network (Neubig
et al., 2017). We run the experiments with synchronized decoding using the version of the
code from Ruzsics and Samardzi¢ (2017) which is compatible with DyNet. ® The code for
all our experimental settings is publicly available.”

Neural Hyperparameters. The character embeddings are shared between input (source)
and output (target) vocabulary and are set to 100. The POS embeddings have size 50.
The forward and backward RNN of the bidirectional encoder have 200 hidden units each.
The decoder also has 200 hidden units. We apply an ensemble of 5 NMT models, where
each model is trained with random start using SGD optimization. The models are trained
for a maximum of 40 epochs, possibly stopping earlier if the performance measured on
the development set is not improving after 10 epochs. The training examples are shuffled
before each epoch.

Parameters  for  synchronized  decoding. The  word-level language model
LMwus+sms:word is built on 3-grams with modified Kneser-Ney smoothing using
the SRILM toolkit. The weight of the LM component in the synchronized decoding is
tuned with MERT optimization by maximizing the accuracy score on the development set.
Beam size 3 is used for the final predictions on the test set in all the settings.

5.1 Baseline Models and Comparison

For our experiments with and without POS tags we consider separate baselines which are
designed to assess the difficulty of the normalization task in the two scenarios. For com-
parison with neural models in the setting without POS tags, we also run experiments with a
CSMT model, due to its prominent status in the task of Swiss German text normalization.

Baseline. For our baseline in the setting without POS tags, we adapt an approach which
was reported for the normalization task of Swiss German in Samardzi¢ et al. (2015). To
this end, we consider three classes of input words in the test set: NEW, AMBIGUOUS and
UNIQUE. The NEW category includes the words that have not been observed in the training
set. The Baseline simply copies such word as its normalization. The UNIQUE words are as-
sociated with exactly one normalization form in the train set, which is used by the baseline
at test time. The last category, AMBIGUOUS, consists of input words which are associated
with more than one normalization candidate from the train set. For such words, the base-
line uses the most frequent normalization form if there are no ties in their frequencies or,
otherwise, randomly chooses a form out of the normalization candidates. The distribution
of the three word classes in the test set of the WUS corpus is shown in the left hand side of
Table 3.

Baseline+POS. In the setting with POS features we introduce a different baseline (Base-
line+POS) similar to the approach above which addresses ambiguous words. Specifically,

8 https://github.com/tatyana-ruzsics/uzh-corpuslab-syncdecode
® https://github.com/tatyana-ruzsics/uzh-corpuslab-pos—-normalization
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we consider the same three classes of source words in the test set and normalize the words
in the NEW and UNIQUE classes in the same way as it is done by the Baseline. In order
to allow Baseline+POS to use the additional input information in the form of POS tags,
we further split the words in the AMBIGUOUS class into two subclasses. The first subclass
consists of words for which each POS tag that appears together with this word in the train
set can be associated with a unique normalization form, i.e. there is a unique normalization
for the pair (word, POS tag). This form is then selected by the Baseline+POS for the input
pair (word, POS tag) at the test time. We refer to this subclass as POS-UNAMBIGUOUS. The
other subclass, POS-AMBIGUOUS, consists of the words which have at least one normaliza-
tion form in the train set associated with more than one POS tag. In such cases, if the tag of
the input word has not been observed with this word at the train time, the model selects the
most frequent normalization of this word in the train set. Otherwise, Baseline+POS selects
the most frequent normalization corresponding to the test input pair (word, POS tag) or a
random form out of its normalization candidates, in case of a tie. The distribution of the
word subclasses for the AMBIGUOUS class in the test set of the WUS corpus is shown in
the left hand side of Table 4.

CSMT. We consider a setting for CSMT with an additional language model trained over
the target side of the SMS corpus (LMsms:char). Note that CSMT already includes a lan-
guage model over the target side of the train data (WUS data, in our case), therefore the
additional model is trained only over the extra data on the target side (target side of the
SMS corpus). Such setting provides a basis of comparison to our NMT+LMwus+sms:word
model. Also note that the CSMT language models operate only at the character level. 1°
We used the Moses toolkit with the following adjustments to the standard settings: i) as-
suming monotonic character alignment, distortion (reordering) was disabled; ii) in tuning,
we used WER!! instead of BLEU for MERT optimization of the model’s components. We
used the KenLLM language model toolkit (Heafield, 2011) with character 7-grams.

5.2 Evaluation Metric

In a character-level framework, where most alignment units consist of single words, eval-
uation metrics such as precision, recall and BLEU may provide information on the extent
to which a unit normalized by the model, viewed as a sequence of characters, differs from
its reference. They thus express the magnitude of the intra-word error. However, such met-
rics are position-independent, and might yield a high score when the tokens of the output
match those of the reference, despite being in the wrong position. In a word-level setting,
changing the position of words or word sequences does not necessarily go to the detriment
of sentence fluency. By contrast, in a character-level setting, the position of the charac-
ters within a word has a higher impact on fluency. For this reason, we chose to simply
assess whether a source sequence has been correctly normalized or not by the system, and
the accuracy score is used to evaluate the baselines and the various models implemented.

10 1t is not a trivial task to incorporate a LM over words into the CSMT framework and to the best of
our knowledge such work has not been done before.

11 WER: Word Error Rate. This metric becomes Character Error Rate in CSMT.
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Table 2. Text normalization accuracy scores.

Setting Accuracy (%)

Without POS  Baseline 83.72
CSMT + LMsms:char® 86.14

NMT 86.81

NMT + LMwus+sms:word® 87.09

With POS Baseline + POS 85.64
NMT + POS 89.13

NMT + POS + LMwus+sms:word 89.53

¢ LMsms:char : language model trained over characters over the target side of the SMS corpus. As
noted before, this is a different LM from the one which is used as a part of the CSMT system and
trained on the WUS corpus only.

® LMwus+sms:word : language model trained over words over the target side of the WUS corpus
extended with the target side of the SMS corpus.

Table 3. Performance by source words categories.

Source words categories No Correct predictions (%)
Baseline NMT NMT NMT
+LM  +POS+LM

TOTAL 5043 83.72 86.81 87.09 89.53
AMBIGUOUS® 1719 80.40 80.05 80.10 86.68
UNIQUE® 2714 98.16 98.16 98.16 97.97
NEW® TOTAL 610 28.85 5541 57.54 60.00
wus ¢ NEW_TRG 364 4341 54.67 X X

SEEN_TRG 246 732 56.50 X X

WUS+SMS® NEW_TRG 240 X x  47.50 52.50

SEEN_TRG 370 X x  64.05 64.86

% AMBIGUOUS: input words with more than one normalization based on the train set.

b UNIQUE: input words with one normalization based on train set.
¢ NEW: input words that have not been seen in the train set.

4 WUS: only the WUS corpus is used for model training.
¢ WUS + SMS: additional target side of the SMS corpus is used for LM training.

We compute the accuracy of the normalized test set units by comparison with the manual
normalization.

6 Results and Discussion

The results of our experiments are shown in Table 2. In the setting without POS features,
the NMT model alone outperforms both Baseline and CSMT. The best accuracy score of
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Table 4. Disambiguation Analysis with POS tags.

Source words categories No Correct predictions (%)
Baseline NMT NMT
+POS +LM +POS+LM

TOTAL 5043 85.64 87.09 89.53
AMBIG.  TOTAL 1719 86.04 80.10 86.68
POS-UNAMB.? 1071 91.22 83.66 91.22

POS-AMB.* TOTAL 648 7747 7423 79.17

NEwW_Pos? 11 1429 14.29 14.29

TIES® 14 57.14 7143 50.00

No_TIESY 623 78.97 75.28 80.90

% AMBIGUOUS: input words in the test set that have more than one normalization based on the train
set.

® pPOS-UNAMBIGUOUS: ambiguous words for which each POS tag that appears together with this
word in the train set can be associated with a unique normalization form, i.e. at test time there is a
unique normalization for the input pair (word, POS tag).

¢ POS-AMBIGUOUS: ambiguous words that have at least one normalization form in the train set
associated with different POS tags.

4 NEW_POS: alignment units (word, POS tag) in the test set where the word is from the NON-POS-
DISAMB. class and the POS tag is not observed in the train set.

¢ TIES: alignment units (word, POS tag) where the word is from the NON-POS-DISAMB. class,
which are associated with different normalization form with the same frequencies in the train set.

f NO_TIES: alignment units (word, POS tag) where the word is from the NON-POS-DISAMB. class,
which are associated with different normalization forms with different frequencies in the train set.

87.09% 1in this setting is obtained by the NMT+LM model. This result indicates that the
NMT approach benefits from the integrated language model for our task.

Turning to the setting with POS features, the NMT+POS model achieves a substantial
improvement over the Baseline+POS and the best performing model in the setting without
POS (NMT+LM). Finally, augmenting the NMT+POS model with an additional language
model (NMT+POS+LM) results in the best overall accuracy of 89.53%.

Recall that the PoS tagger’s performance is around 90% on the development and test
WUS data. We tried to improve the performance of the tagger by using more data to train
it (both WUS and SMS) but that curiously did not improve normalization results. We hy-
pothesize that this is due to the fact that we use the silver standard for the POS tags, while
the normalization data is gold.

The results confirm that both approaches for adaption of the plain NMT model — syn-
chronized decoding and POS features — are beneficiary and complementary for the task of
text normalization. In order to evaluate the two components separately, we assess the per-
formance of our models on the different categories of the input words in the test set. The
results for the word categories introduced in the Baseline approach, i.e. NEW, AMBIGUOUS
and UNIQUE, are presented in Table 3. We report the performance of the Baseline, indicat-
ing the difficulty of the task for each category, and the best performing models in our two
setting, NMT+LM and NMT+POS+LM. To further assess the impact of the additional lan-
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guage model alone, we compare the results of NMT+LM model to the plain NMT model.
To this end, we introduce two subcategories for the NEW class of the input words: we di-
vide the test set token pairs (input word, normalization form) for which the input word has
not been seen during training into two classes: i) SEEN_TRG, where the normalization form
is a word that has been observed in the target side of the train set; ii) NEW_TRG, where the
normalization form is a word that has not been observed.'?

Analyzing the results of the models on the different classes of the input words, we ob-
serve that the performance of the NMT and NMT+LM models on the UNIQUE words
is identical to that of the Baseline, meaning that they replicate the Baseline strategy
for this category. However, there is a slight drop in the performance of the best model,
NMT+POS+LM, which could be attributed to the higher impact of the POS features (that
could be unseen or noisy) in this model.

The accuracy of all neural models in the NEW category is almost twice as high as the
Baseline. This could be explained by the ability of the neural models to learn well local
string transformations, as opposed to the naive copy approach of the Baseline model. The
highest score achieved in this category by NMT+POS+LM is still relatively low (60%)
compared to the performance in the other categories, suggesting that normalization of
words not seen during the training is a particularly difficult task. Comparing the results
of the NMT and NMT+LM models among the three word categories, the highest improve-
ment of around 2 percent points is achieved on the NEW words resulting in 57.54% ac-
curacy. This suggests that the advanced decoding with additional LM particularly helps
with the words in this category which can be explained by the subclass performance. We
observe that the LM pushes the performance of NMT+LM higher in the SEEN_TRG sub-
category compared to the NEW_TRG subcategory (64.05% vs 47.50%), while the results
on these subcategories are relatively similar for the NMT model (56.50% vs 54.67%).
The difference can be explained by the fact that for the NMT+LM model the weight of
the SEEN_TRG subclass in the NEW category becomes higher due to additional target SMS
data used for LM training. The synchronized decoding algorithm (optimized for the overall
accuracy) drives the LM weight up, which results in choosing more normalization forms,
out of the candidates generated by NMT, that have been observed in the target side. This
preference leads to higher performance on SEEN_TRG words, but comes at the expense of
a decreased performance on the subcategory NEW_TRG. An additional improvement of 5
percentage points is achieved on the NEW_TRG category by NMT+POS+LM model. This
can be explained by a better ability of this model to learn local string transformations in
the presence of POS features.

The additional POS features used by the NMT+POS+LM model help to improve the ac-
curacy on AMBIGUOUS words by almost 7 percentage points compared to the approaches
without the POS tags. We analyze the performance of the POS-aware models on this cate-
gory by considering the subclasses of the AMBIGUOUS category introduced for the Base-
line+POS approach: POS-UNAMBIGUOUS and POS-AMBIGUOUS words. In Table 4 we
show the results on the subclasses, for the best performing model NMT+POS+LM, and
the baseline model (Baseline+POS), which gives an estimation of the task complexity in

12 Tn case of one-to-many or many-to-many alignment units we assign an input word token to
NEW_TRG if at least one of the target words in its normalization form is unseen.
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this setting. In order to isolate the impact of the POS tags in the NMT+POS+LM model,
we include the NMT+LM model for comparison.

We observe that while the overall performance of the best model without POS tags
(NMT+LM) is higher than the Baseline+POS, its accuracy is inferior on the AMBIGU-
OUS category and its two subcategories. However, adding POS tags features is helpful for
both classes. In particular, the NMT+POS+LM model manages to reach the accuracy of
the Baseline+POS on the POS-UNAMBIGUOUS subcategory, whereas it outperforms the
baseline on the subcategory POS-AMBIGUOUS.

6.1 Error Analysis

We have analyzed the difference in the performance of our systems on three major cate-
gories of test input words: NEW, UNIQUE and AMBIGUOUS. In the following, we discuss
what are the typical errors produced by the systems and how the proposed enhancements
for the plain NMT model, synchronized decoding and POS features, affect the performance
in the different categories.

NEW words. As already noted in the discussion above, the optimization mechanism in
the synchronized decoding used in the NMT+LM model pushes up the weight of the LM
component resulting in a higher overall accuracy and, in particular, higher accuracy in
the NEW category, i.e. test words that have not been observed in training. We investigate
the source of a different performance of NMT+LM and NMT+POS+LM models in the
subcategories of the NEW words compared to the NMT model (see Table 3).

1. From NMT to NMT+LM: why is there a jump in the performance in the SEEN_TRG
category?
With the increase of the weight of the LM component, more words are normalized by
selecting the form out of the NMT candidates that has been seen during training. The
examples of NMT errors which have been corrected with the LM in the NMT+LM
system are shown in the Table 5. Section a) of the table lists examples of NMT errors
where the normalization form consists of only one word, i.e. one-to-one or many-to-
one alignment units. For example, the word schi ‘already’ was normalized wrongly
by NMT as schei, whereas NMT+LM picks the right form schon, which has been
seen in the target side of the train set as a normalization form for other varieties of
this input word in Swiss German. In section b) we present examples of the NMT er-
rors where the LM helps to correct the prediction for the words whose normalization
consists of several words, i.e. one-to-many or many-to-many alignment units. This is
the category which is specifically targeted by the mechanism of the scores synchro-
nization in the synchronized decoding. For example, NMT+LM produces the correct
normalization form kénnen wir for the input word kémmer ‘we can’ while the NMT
prediction is kommer. Finally, with the addition of the SMS target data, more target
forms become seen during the LM training, which helps the NMT+LM model to
select the right normalization. Some of such examples are presented in section c¢) of
the Table.

2. From NMT to NMT+LM: why is there a drop in the performance in the NEW_TRG
category?
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Table 5. Errors of NMT in the NEW words category from the SEEN_TRG class corrected by

NMT+LM.
Input word Normalization Eng. transl. Gold seen
NMT NMT+LM in WUS?  in SMS?
and Gold
a)  schwizer schwizer schweizer Swiss yes -
schi schei schon already yes -
aver aver aber but yes -
b) kommer kommer konnen wir we can yes -
hanie habeie habe ich I have yes -
hanise habe ise habe ich sie I have her yes -
c) trurig trurig traurig sad no yes
usfiierige ausfiirigen  ausfiihrungen execution no yes
gschune geschune geschienen has seemed no yes

While the strategy of increasing the LM weight in the synchronized decoding ap-
proach helps to improve the overall accuracy score, this comes at the expense of a
decreased performance in the NEW_TRG category, i.e. words that have a normaliza-
tion form which has not been seen in the target side of the train data. For the NEW
words which have at least one NMT normalization candidate that has been seen dur-
ing training, the synchronized decoding often results in selecting this candidate as
a prediction. We present some cases where this leads to an error in Table 6. For
example, the word essig ‘vinegar’ has three NMT normalization candidates (sorted
by the decreasing NMT log-probability score): essig, essen and einsig. While NMT
correctly normalizes this word as essig, NMT+LM erroneously selects the form es-
sen ‘to eat’ which was observed in the train target data. This kind of errors could be
reduced to some extent with the use of more target data for LM training. However,
due to many rare words according to the Zipf’s Law, LM will be overconfident for
some cases no matter how much we increase the training data.

. From NMT+LM to NMT+POS+LM: why is there a jump in the performance in the

NEW_TRG category?

The corrected cases are mostly due to the fact that the POS features help the
NMT+POS model generate better normalization candidates. The synchronized de-
coding in NMT+POS+LM then tends to select the candidate which has been seen
in the target training data. This, in turn, leads to the increase in the performance in
the NEW_TRG category. To illustrate this case, the word rumi ‘I clean’ has a gold
normalization rdume ich and a silver POS tag VVFIN+PPER (see Table 7). The
NMT system generates three normalization candidates for this word, sorted by the
decreasing NMT log-probability score: rumi, rum ich and rdume. The first two forms
were not observed in the target side of the corpus, whereas the third one was. Con-
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Table 6. Errors of NMT+LM in the NEW words category from the NEW_TRG class

corrected by NMT.
Input word Normalization Eng. transl. Gold seen = NMT+LM seen
NMT NMT+LM in train? in train?
and Gold
niveau niveau nivea level no yes
essig essig essen vinegar no yes
ol ol ein oil no yes

Table 7. Errors of NMT+LM in the NEW words category from the NEW_TRG class
corrected by NMT+POS+LM.

Input derfiir rumi halt am schluss  uf

Pred. POS PROAV  VVFIN+PPER ADV APPRART NN PTKVZ
Silver POS PROAV  VVFIN+PPER ADV APPRART NN PTKVZ
Gold Norm. dafiir riaume ich halt am Schluss  auf
Eng. lemma inreturn I clean just at end up

Eng. transl. ... in return, I will just clean up at the end

Pred. Norm.:*

NMT+LM rumi, rum ich, rdume

NMT+POS+LM  riume ich, rum ich, rume ich

@ Pred. Norm.: 3-best predicted normalization forms sorted by the decreasing model score, the best
candidate (predicted normalization) is in bold.

trary to tendency of the synchronized decoding to pick candidates which have been
seen during training (i.e. have a high LM score), in this case the NMT+LM model
selects the first form rumi as a prediction. This is due to the fact that the NMT
log-probability for this third candidate is much lower than for the first two and it
prevails in the combined weighted NMT and LM score (i.e., LM score and weight
are not high enough to select the third option, which was seen in the train set during
the decoding). However, with the addition of POS features, NMT+POS generates
a different list of candidates: rum ich, rdume ich and rume ich (sorted by the de-
creasing NMT log-probability score). In this case, the weighted combination of the
NMT+POS and LM scores leads to the selection of the correct candidate rdume ich
by the NMT+POS+LM model.

UNIQUE words. We have observed in Table 3 that the neural models without POS features
(NMT and NMT+LM) replicate the strategy of the baseline models for the UNIQUE words
category by simply copying the word as its normalization. However, the accuracy score
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Table 8. An example of the Errors in the UNIQUE category by the models without POS

features.
Input bir nette lehrerin ~ ?
Pred. POS APPR+ART ADJA NN ?
Silver POS APPR+ART ADJA NN ?
Gold Norm. bei der netten Lehrerin ?
Eng. lemma with the nice teacher  ?
Eng. transl. Is the teacher nice?
Pred. Norm.:
All models wrt features netter

in this category is under 100% and becomes even lower for the model with POS features
(NMT+POS+LM). Next, we present the common patterns for the errors in this category.

1. Why the performance in the UNIQUE category is under 100% for all models?

One of the observed patterns of the mistakes in the UNIQUE category is the wrong
inflection ending of an adjective in the normalized form. An example of such error
is illustrated in Table 8. The input word nette ‘nice’ is associated with the unique
normalization netter in the training set, which is selected by all the models at test
time, although the correct normalization form is netten. Taking the context into ac-
count could help in such cases. Concretely, recognizing the dative case marker —
which is required by the preposition bei ‘with’ — and the feminine marker — suffix
in of the singular noun Lehrerin ‘teacher’ — in the presence of the definite article
der should result in the adjective nett ending with a suffix en. Therefore, while the
POS tag alone gives already an indication that the input word is an adjective, more
fine-grained morphosyntactic information (or context which can provide this infor-
mation) is further needed for correct normalization.

. Why the performance in the UNIQUE category decreases for the NMT+POS+LM

model compared to the Baseline and NMT+LM model?

We have found that UNIQUE words which have a wrong predicted POS tag were
particularly prone to be wrongly normalized by the NMT+POS+LM model. While
the systems without POS features select the most frequent normalization form for
such word in the train set (which almost always leads to the correct solution), the
NMT+POS+LM model gives a high weight to the combination of POS tag and local
string transformation. For example, the word ess ‘eat’ is associated with the unique
normalization form esse in the train set, which is then selected by the NMT+LM
model for a test set example presented in Table 9. Moreover, this normalization form
is associated with the unique tag VVFIN. This word is wrongly normalized as ein by
the NMT+POS+LM model. The error is caused by the fact that the tag of the word
is wrongly predicted as ART instead of VVFIN. The NMT+POS+LM model gives
a high weight to this POS signal and normalizes the word as ein. This could be ex-
plained by a high frequency of normalizing the word es as ein (indefinite article ‘a’)
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Table 9. An example of the errors in the UNIQUE category by the models with POS

features.
Input ess glich ez
Pred. POS ART ADJD ADV
Silver POS VVFIN ADJD ADV
Gold Norm. esse trotzdem  jetzt
Eng. lemma eat anyways now
Eng. transl. I will eat now anyways...
Pred. Norm.:
NMT+LM esse

NMT+POS+LM  ein

in the train data. Therefore, NMT+POS+LM gives more weight to the combination
of the POS feature ART and substring es and goes beyond the approach of selecting
a unique normalization associated with the full input word.

AMBIGUOUS words. As we saw in Table 3, the addition of POS features helps to con-
siderably improve the performance of the systems on AMBIGUOUS words, i.e. test words
which have more than one normalization candidate in the train set. The analysis of the per-
formance on the subclasses of the AMBIGUOUS words in Table 4 has shown that in almost
half of the cases, all the observed input pairs (word, POS tag) for the given word are asso-
ciated with exactly one normalization form, which is then selected by all the systems with
POS features (POS-UNAMBIGUOUS subcategory). We perform an error analysis of such
strategy in this subcategory. In the other half of the cases (POS-AMBIGUOUS subcategory),
this strategy is not always applicable since the input word can have the same normaliza-
tion form associated with different tags in the training. However, the performance of the
neural system NM+POS+LM in this subcategory is higher than the Baseline+POS. We in-
vestigate the source of this jump and the errors in this subcategory of the best performing
NMT+POS+LM system.

1. Why the performance of the Baseline+POS and NMT+POS+LM systems on POS-
UNAMBIGUOUS category is under 100%?
Some of the errors in this subcategory come from the incorrectly predicted POS tag.
For example, in the train set the ambigous input word vor has been normalized as vor
(‘before’; ‘in front of”) with the tag APPR and as von der (‘from the’;‘of the’) with
the tag APPR+ART. At the test time (Table 10), its predicted tag is APPR, while the
silver tag is APPR+ART. Therefore, all the models select the incorrect normalization
form vor.
In more complicated cases where the tag is correctly predicted, some of the errors
come from a further ambiguity in the case markers of the normalized form. To il-
lustrate this case, the ambiguous input word Liiiit has been normalized as Leuten
‘people’ with POS tag NN and ldute ‘to ring” with POS tag VVFIN. At test time
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Table 10. An example of the Errors in the AMBIGUOUS category for the words in the
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POS-UNAMBIGUOUS class with correctly predicted tag by the models with POS features.

Input wiu S niveau vor Klass N}
Pred. POS KOUS ART NN APPR NN ADV
Silver POS KOUS ART NN APPR+ART NN ADV
Gold Norm. weil das niveau von der Klasse so
Eng. lemma because the level of the class SO
Eng. transl. ... because the level of the class has been so poor

Pred. Norm.:

All systems with POS vor

Input unterirdisch  isch gsi

Pred. POS ADJD VAFIN  VAPP

Silver POS ADID VAFIN  VAPP

Gold Norm. unterirdisch  ist gewesen

Eng. lemma poor has been

(Table 11), the models select the form Leuten, corresponding to the (correctly pre-
dicted) NN tag. However, the system fails to recognize that the suffix ‘n’ in the train
set is due to the preposition vor ‘of the’, not presented in the test case, which al-
ways requires a dative case. Such ambiguity in the case markers could be potentially
resolved with the use of context information or more fine-grained tagset.

. Why the performance of NMT+POS+LM on POS-AMBIGUOUS increases compared

to the Baseline+POS model?

While the difference in the performance of the two models on the POS-AMBIGUOUS
subclass is small, they show an interesting behavior of the NMT+POS+LM model.
For example, the input word viel ‘much’, with the silver tag ADV at test time, was
tagged with the wrong tag PIAT. The word is wrongly normalized as viele by the
Baseline+POS model and correctly normalized as viel by NMT+POS+LM (see Ta-
ble 12). In the train set, it is normalized 26 times as viel, with different POS tags
(including 4 times with the tag PIAT and 15 times with the tag ADV) and 6 times
as viele with the tag PIAT. Therefore, the Baseline+POS takes the normalization
with a higher frequency viele for the test input pair (viel, PLAT). The behaviour of
NMT+POS+LM could be explained if we look at the counts of the target forms
viel and viele, not only for the input word viel but also for its variants viil and vill:
these forms are normalized as viele 97 times and viel only 32 times. Therefore, we
hypothesize that while the NMT+POS+LM model gives a high weight to the POS
features, this weight is balanced with the contribution of the high frequency of the
local transformations.

Similarly, the source word mir is normalized 78 times in the train set as mir (‘me’
as indirect object) and 82 times as wir ‘we’. Both normalization forms are per-
sonal pronouns and have therefore the same POS tag (PPER). The Baseline+POS
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Table 11. An example of the Errors in the AMBIGUOUS category for the words in the
POS-UNAMBIGUOUS class with correctly predicted tag by the models with POS features.

Test:

Input Pflege jede Tag vier Liiiit

Pred. POS NN PIAT NN CARD NN

Silver POS VVFIN PIAT NN CARD NN

Gold Norm. pflege jeden Tag vier Leute

Eng. lemma take care of every day four people

Eng. transl. [1] take care of four people every day...

Pred. Norm.:

All systems with POS leuten
Train:
Input dass de Praktikant  vor Liitit gfluecht  hat
Silver POS ~ KOUS ART NN APPR NN VVPP VAFIN
Gold Norm.  dass der Praktikant  vor Leuten geflucht hat
Eng. lemma  that the intern from people  curse has
Eng. transl. ... that the intern has cursed in front of people

Table 12. An example of the Errors in the Ambiguous category for the words in the non
POS-disambiguated class.

Input i bi z viel gschwumme
Pred. POS PPER VAFIN APPR PIAT NN

Silver POS PPER VAFIN PTKA ADV VVPP

Gold Norm. ich bin zu viel geschwommen
Eng. lemma 1 have too much  swim [pr. perfect]
Eng. transl. I have swam too much

Pred. Norm.:

Baseline+POS viele

NMT+POS+LM viel

selects the more frequent form wir to normalize the input pair (mir, PPER) while the
NMT+POS+LM model selects again the less frequent form mir. This choice could
be again hypothetically explained if we look at how many times these two forms
were used to normalize dialect variants of the input word mir in the train set, such as
mier, mer and others. While the target form wir appears in total 144 times, the form
mir is seen 209 times. Also, the higher frequency of the test cases where the input
mir is normalized as mir is more frequent than the other option. Thus, the choice of
the NMT+POS+LM model is more advantageous.
3. Why the performance of NMT+POS+LM on POS-AMBIGUOUS is under 100%?
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As the previous example of the input word mir shows, this word can have different
normalization forms which both correspond to the same tag PPER. Another common
category of errors is related to the normalization of definite and indefinite articles.
They all share the same POS tag ART, though the normalization forms can be dif-
ferent due to complex morphology, i.e. case, gender and number markers. As pre-
viously noted, such errors could be potentially resolved with the use of the context
information or a more fine-grained tagset.

7 Conclusion and Future Work

In this paper we propose a combination of mechanisms for the adaptation of a character-
level NMT framework to the task of Swiss German text normalization. The first approach
is an advanced decoding mechanism with an additional word-level language model, which
allows to incorporate more data on the target side and improve the fluency of the NMT
output. The second approach is the use of additional linguistic features (in our case, POS
tags) in the NMT system. We show that both approaches are complementary and result in
the improvement of the neural models. In particular, the decoding part helps to improve the
performance on unseen input words, whereas POS tag information addresses ambiguous
words, i.e. words with different possible normalization forms. These improvements are
important for the development of NLP tools for Swiss German, which is increasingly in
demand. However, the method is also conceptually portable to any similar setting of the
text normalization.

Our thorough performance and error analysis point to the two major direction for further
improvements. One direction would be to increase the amount of the target data in order to
address unseen input words. Another possible direction is to include more context informa-
tion to target ambigous words. In particular, some cases of ambiguity cannot be resolved
with POS tag features due to the complex morphology of the language. One possible way
to address such cases could be the development of a more fine-grained tagset. Alternatively,
one could use the context information more directly by including the neighbouring words
within the sentence boundaries into the neural system.
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