The impact of measurement bias on the assessment of change

Calculation of effect-size indices

Mathilde Verdam Frans Oort & Mirjam Sprangers University of Amsterdam & Academic Medical Center

SEM meeting Zürich 7-8 april 2016

Health-related quality of life

• WHO definition of Health (1948):

"A state of complete physical, mental and social well-being and not merely the absence of disease or infirmity."

 Not merely 'objective' medical outcomes

Health-related quality of life

"Quality of life is regarded as a subjective report of the patients' experience of disease and treatment."

• SF-36

- Physical health
 - Physical functioning, bodily pain, general health, role limitations due to physical health
- Mental health
 - Mental health, social functioning, vitality, role limitations due to emotional health

De Haes et al. (2012) Ware et al. (1996)

Structural Equation Modeling

The impact of measurement bias on the assessment of change

Outline

- Assessment of change in health-related quality of life (HRQL)
- Investigation of measurement bias (or response shift)
- Calculation of effect-size indices using a decomposition of change
- Relation to other effect-size indices

Measurement bias

• Measurement bias / Response shift

"A change in the frame of reference by which individuals assess their HRQL"

Sprangers & Schwartz (1999)

Structural Equation Modeling

Measurement bias detection

- Intercepts
- Factor loadings
- Residual variances

• Recalibration

A change in respondents' internal standard of measurement

Intercepts (uniform) Residual variances

Reprioritization

A change in respondents' values regarding the relative importance of subdomains

Oort (2005)

Reconceptualization

A change in definition of the target construct

Oort (2005)

- Detect response shift / measurement bias
 - Reconceptualization
 - Reprioritization
 - Recalibration

• Take into account measurement bias

• A more valid assessment of change

Oort (2005)

A more valid assessment of change

• But what is the impact of potential response shifts on the assessment of change??

 \rightarrow Is 'more valid' also 'more informative'?

Assessment of significance

Chi-square difference test Significance of model parameters

Assessment of relevance

Impact on the assessment of change?

- → Comparing common factor means before/after bias detection
- \rightarrow Effect-size indices using a decomposition of change

Observed change = True change + Recalibration + (Reprioritization & Reconceptualization)

Residual variances do not feature in the mean structure

$$\mu_{\text{post}} - \mu_{\text{pre}} = \Lambda_{\text{pre}} \alpha_{\text{post}} + (\tau_{\text{post}} - \tau_{\text{pre}}) + (\Lambda_{\text{post}} - \Lambda_{\text{pre}}) \alpha_{\text{post}}$$

Observed change = True change + Recalibration + (Reprioritization & Reconceptualization)

Calculation of effect-size indices

Cohen's
$$d = \frac{\overline{x}_2 - \overline{x}_2}{s_{x_2 - x_1}}$$

Using SEM estimates : $\frac{\hat{\mu}_{post} - \hat{\mu}_{pre}}{\hat{\sigma}_{post-pre}} = \frac{\hat{\mu}_{post} - \hat{\mu}_{pre}}{\sqrt{\hat{\sigma}_{post}^2 + \hat{\sigma}_{pre}^2 - 2\hat{\sigma}_{post,pre}}}$

$$\mu_{\text{post}} - \mu_{\text{pre}} = \Lambda_{\text{pre}} \alpha_{\text{post}} + (\tau_{\text{post}} - \tau_{\text{pre}}) + (\Lambda_{\text{post}} - \Lambda_{\text{pre}}) \alpha_{\text{post}}$$

$$\sqrt{\hat{\sigma}_{\text{post}}^2 + \hat{\sigma}_{\text{pre}}^2 - 2\hat{\sigma}_{\text{post},\text{pre}}} \quad \sqrt{\hat{\sigma}_{\text{post}}^2 + \hat{\sigma}_{\text{pre}}^2 - 2\hat{\sigma}_{\text{post},\text{pre}}} \quad \sqrt{\hat{\sigma}_{\text{post}}^2 + \hat{\sigma}_{\text{pre}}^2 - 2\hat{\sigma}_{\text{post},\text{pre}}} \quad \sqrt{\hat{\sigma}_{\text{post}}^2 + \hat{\sigma}_{\text{pre}}^2 - 2\hat{\sigma}_{\text{post},\text{pre}}}$$

\rightarrow <u>Contribution to change in terms of effect-size indices</u>

Application in HRQL

<u>Sample</u>: 170 newly diagnosed cancer patients undergoing invasive surgery. 87 men and 83 women. Ages ranging from 27 to 83 (M = 57.5, SD=14.1).

<u>**Procedure</u>**: Questionnaires were administered prior to surgery (pre-test), and three months following surgery (post-test)</u>

Application in HRQL

Application in HRQL

	Observed	True	Recal	Repri	Recon	
Scale	change	change	RS	RS	RS	
PF	-0.51**	-0.51**	-	-	-	General Physical Health
RP	-0.28**	-0.47**	0.19**	-	-	// <i>d</i> = −0.51 (<i>d</i> = −0.46)
BP	-0.25**	-0.42**	0.17**	-	-	//
SF	-0.09	0.01	-	-0.10*	-	General Mental Health:
MH	0.37**	0.37**	-	-	-	<i>d</i> = 0.39 (<i>d</i> = 0.33)
RE	0.26**	0.26**	-	-	-	
GH	-0.01	-0.15**	-	-	0.14**	General Fitness:
VT	-0.31**	-0.31**	-	-	-	d = -0.34 (d = -0.33)
FT	-0.32**	-0.32**	-	-	-	

	Observed	True	Recal	Repri	Recon	
Scale	change	change	RS	RS	RS	
PF	-0.51**	-0.51**	-	-	-	General Physical Health:
RP	-0.28**	-0.47**	0.19**	-	-	d = -0.51 (d = -0.46)
BP	-0.25**	-0.42**	0.17**	-	-	
SF	-0.09	0.01	-	-0.10*	-	General Mental Health:
MH	0.37**	0.37**	-	-	-	d = 0.39 (d = 0.33)
RE	0.26**	0.26**	-	-	-	
GH	-0.01	-0.15**	-	-	0.14**	General Fitness:
VT	-0.31**	-0.31**	-	-	-	d = -0.34 (d = -0.33)
FT	-0.32**	-0.32**	-	-	-	

	Observed	True	Recal	Repri	Recon	
Scale	change	change	RS	RS	RS	
PF	-0.51**	-0.51**	-	-	-	General Physical Health:
RP	-0.28**	-0.47**	0.19**	-	-	<i>d</i> = -0.51 (<i>d</i> = -0.46)
BP	-0.25**	-0.42**	0.17**	-	-	//
SF	-0.09	0.01	-	-0.10*	-	General Mental Health:
MH	0.37**	0.37**	-	-	-	<i>d</i> = 0.39 (<i>d</i> = 0.33)
RE	0.26**	0.26**	-	-	-	
GH	-0.01	-0.15**	-	-	0.14**	General Fitness:
VT	-0.31**	-0.31**	-	-	-	d = -0.34 (d = -0.33)
FT	-0.32**	-0.32**	-	-	-	

 \rightarrow Patients score higher on RP and BP after treatment, as compared to the other indicators of general physical health (d = .19, d = .17)

	Observed	True	Recal	Repri	Recon	
Scale	change	change	RS	RS	RS	
PF	-0.51**	-0.51**	-	-	-	General Physical Health:
RP	-0.28**	-0.47**	0.19**	-	-	<i>d</i> = -0.51 (<i>d</i> = -0.46)
BP	-0.25**	-0.42**	0.17**	-	-	//
SF	-0.09	0.01	-	-0.10*	-	General Mental Health:
MH	0.37**	0.37**	-	-	-	// <i>d</i> = 0.39 (<i>d</i> = 0.33)
RE	0.26**	0.26**	-	-	-	
GH	-0.01	-0.15**	-	-	0.14**	General Fitness:
VT	-0.31**	-0.31**	-	-	-	d = -0.34 (d = -0.33)
FT	-0.32**	-0.32**	-	-	-	

 \rightarrow Patients SF becomes more important to the measurement of general physical health after treatment (d = -.10)

	Observed	True	Recal	Repri	Recon	
Scale	change	change	RS	RS	RS	
PF	-0.51**	-0.51**	-	-	-	General Physical Health:
RP	-0.28**	-0.47**	0.19**	-	-	<i>d</i> = -0.51 (<i>d</i> = -0.46)
BP	-0.25**	-0.42**	0.17**	-	-	//
SF	-0.09	0.01	-	-0.10*	-	General Mental Health:
MH	0.37**	0.37**	-	-	-	<i>d</i> = 0.39 (<i>d</i> = 0.33)
RE	0.26**	0.26**	-	-	-	
GH	-0.01	-0.15**	-	-	0.14**	General Fitness:
VT	-0.31**	-0.31**	-	-	-	d = -0.34 (d = -0.33)
FT	-0.32**	-0.32**	-	-	-	

 \rightarrow Patients GH becomes indicative of the measurement of general mental health after treatment (d = .14)

 \rightarrow Impact may differ over samples with different amount of change in the underlying common factors

$$\mu_{\text{post}} - \mu_{\text{pre}} = \Lambda_{\text{pre}} \alpha_{\text{post}} + (\tau_{\text{post}} - \tau_{\text{pre}}) + (\Lambda_{\text{post}} - \Lambda_{\text{pre}}) \alpha_{\text{post}}$$

Significance (CI's) of decomposition difficult to calculate

- \rightarrow Using estimated SE's from SEM program (Sobel's test)?
- → Regard chi-square test / significance parameter as sufficient?

Relation to other effect-sizes

<u>Cohen's d</u>

Intuitive / Interpretable?

Other effect-size indices

- Common Language Effect Size (CLES)
- Success Rate Difference (SRD)
- Number Needed to Treat (NNT)

Relation to other effect-sizes

Common Language Effect Size (CLES) = P(post > pre)

 \rightarrow The probability that a random sampled person scores better at post-assessment than at pre-assessment

Success Rate Difference (SRD) = P(post > pre) – P(post < pre)

 \rightarrow Net probability that someone scores better at post-assessment as compared to pre-assessment

Number Needed to Treat (NNT) = 1 / SRD

 \rightarrow Number of patients that need to be treated to have one person score better at post-assessment as compared to pre-assessment

Relation to other effect-sizes

Cohen's d	CLES	SRD	NNT
0.0	0.50	0.00	∞
0.1	0.54	0.08	12.6
0.2	0.58	0.16	6.31
0.3	0.62	0.24	4.24
0.4	0.66	0.31	3.22
0.5	0.69	0.38	2.61
0.6	0.73	0.45	2.21
0.7	0.76	0.52	1.94
0.8	0.79	0.58	1.74
0.9	0.82	0.63	1.58
1.0	0.84	0.68	1.46
∞	1.00	1.00	1.00

Converting Cohen's d to z: $z = d / \sqrt{2} / \sqrt{1-r}$ (if sd = sd_{pooled})

Rules of thumb apply to correlations between measurements of 0.5

Discussion

Clinically meaningful?

- "Remarkably universality" among estimates of clinical significance that centre around +/- Cohen's d of 0.5
- Recommendation to use Cohen's *d* as a measure of responsiveness to ensure interpretability and comparability
- CLES preferred to develop insights, whereas NNT most intuitive to interpet clinical significance

Effect-size indices are not a panacea

Norman, Sloan, & Wyrwich (2003) Norman, Wyrwich, & Patrick (2007) Kraemer & Kupfer (2006)

Questions / Suggestions?

References

- De Haes, J. C. J. M., Olschewski, M., Fayers P., Visser, M. R. M., Cull, A., Hopwood, P., & Sanderman, R. (2012). *Measuring the quality of life of cancer patients with the Rotterdam Symptom Checklist (RSCL): A manual.* 2nd Ed. Northern Centre for Healthcare Research.
- Kraemer, H. C., & Kupfer, D. J. (2006). Size of treatment effects and their importance to clinical research and practice. *Biological psychiatry*, *59*, 990-996.
- Norman, G. R., Wyrwich, K. W., & Patrick, D. L. (2007). The mathematical relationship among different forms of responsiveness coefficients. *Quality of Life Research, 16*, 815-822.
- Norman, G. et al. (2003). Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. *Medical Care, 41*, 582-292.
- Oort, F. J. (2005). Using structural equation modeling to detect response shift and true change. *Quality of Life Research, 14, 587-598*.
- Sprangers, M. A. G., & Schwartz, C. E. (1999). Integrating response shift into health-related quality of life research: a theoretical model. *Social Science & Medicine*, 48, 1507-1515.
- Ware, J. E., Snow, K. K., Kosinski M., & Gandek, B. (1993). *SF-36 health survey: Manual and interpretation guide*. Boston, MA: The Health Institute, New England Medical Center.