Combining approximate zero constraints for measurement invariance and cross-loadings: An application of dual process growth curve models with panel data

Daniel Seddig

Insitute of Sociology

Meeting of the Working Group Structural Equation Modeling Zurich, 2016

- Measurement invariance
- Cross-loadings

Illustratio

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

- Measurement invariance
- Cross-loadings

2 Illustratio

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

$$Y_{k,t} = T_{k,t} + \Lambda_{k,t}\eta_t + \Theta_{\varepsilon_{k,t}} \quad k = 1,...,K; t = 1,...,T$$
 (1)

Seddig, Daniel (UZH)

Approximate MI and zero CLs

▲ ≣ ► ≣ ∽ • 07.04.2016, Zurich

・ロト ・個ト ・ヨト ・ヨト

$$Y_{k,t} = T_{k,t} + \Lambda_{k,t}\eta_t + \Theta_{\varepsilon_{k,t}} \quad k = 1,...,K; t = 1,...,T$$
 (1)

(a) Exact MI in $\Lambda_{k,t}$:

$$\lambda_{1,1} = \lambda_{1,2} = \dots = \lambda_{1,T}$$

$$\lambda_{2,1} = \lambda_{2,2} = \dots = \lambda_{2,T}$$

$$\vdots = \vdots = \dots = \vdots$$

$$\lambda_{K,1} = \lambda_{K,2} = \dots = \lambda_{K,T}$$
(2)

- Highest level of stringency
- Differences across group/time exactly zero

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

$$Y_{k,t} = T_{k,t} + \Lambda_{k,t}\eta_t + \Theta_{\varepsilon_{k,t}} \quad k = 1,...,K; t = 1,...,T$$
 (1)

(a) Exact MI in $\Lambda_{k,t}$:

$$\lambda_{1,1} = \lambda_{1,2} = \dots = \lambda_{1,T}$$

$$\lambda_{2,1} = \lambda_{2,2} = \dots = \lambda_{2,T}$$

$$\vdots = \vdots = \dots = \vdots$$

$$\lambda_{K,1} = \lambda_{K,2} = \dots = \lambda_{K,T}$$
(2)

- Highest level of stringency
- Differences across group/time exactly zero

(b) Approximate MI in $\Lambda_{k,t}$:

$$\begin{array}{l} \lambda_{1,1} \approx \lambda_{1,2} \approx \ldots \approx \lambda_{1,T} \\ \lambda_{2,1} \approx \lambda_{2,2} \approx \ldots \approx \lambda_{2,T} \\ \vdots \approx \vdots \approx \ldots \approx \vdots \\ \lambda_{K,1} \approx \lambda_{K,2} \approx \ldots \approx \lambda_{K,T} \end{array}$$

$$(3)$$

- flexibility, "wiggle room" (Van de Schoot et al., 2013)
- identification of non-invariants: "two-step Bayesian analysis procedure" (Muthén & Asparouhov, 2013)

Approximate MI and zero CLs

Bayesian SEM Prior distributions for approximate zero constraints

Figure 1: Priors for exact (a) and approximate (b) MI

Seddig, Daniel (UZH)

- Measurement invariance
- Cross-loadings

Illustration

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

Seddig, Daniel (UZH)

Bayesian SEM Cross-loadings

• Exact zero cross-loadings

$$\begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \\ y_{6} \\ y_{7} \\ y_{8} \end{pmatrix} = \begin{pmatrix} \lambda_{y_{11}} = 1 & \lambda_{y_{12}} = 0 \\ \lambda_{y_{21}} & \lambda_{y_{22}} = 0 \\ \lambda_{y_{31}} & \lambda_{y_{32}} = 0 \\ \lambda_{y_{41}} & \lambda_{y_{42}} = 0 \\ \lambda_{y_{51}} = 0 & \lambda_{y_{52}} = 1 \\ \lambda_{y_{61}} = 0 & \lambda_{y_{62}} \\ \lambda_{y_{71}} = 0 & \lambda_{y_{72}} \\ \lambda_{y_{81}} = 0 & \lambda_{y_{82}} \end{pmatrix} * \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \\ \varepsilon_{7} \\ \varepsilon_{8} \end{pmatrix}$$

(4)

イロト イポト イヨト イヨト

Bayesian SEM Cross-loadings

• Exact zero cross-loadings

$$\begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \\ y_{6} \\ y_{7} \\ y_{8} \end{pmatrix} = \begin{pmatrix} \lambda_{y_{11}} = 1 & \lambda_{y_{12}} = 0 \\ \lambda_{y_{21}} & \lambda_{y_{22}} = 0 \\ \lambda_{y_{31}} & \lambda_{y_{32}} = 0 \\ \lambda_{y_{41}} & \lambda_{y_{42}} = 0 \\ \lambda_{y_{51}} = 0 & \lambda_{y_{52}} = 1 \\ \lambda_{y_{61}} = 0 & \lambda_{y_{62}} \\ \lambda_{y_{71}} = 0 & \lambda_{y_{72}} \\ \lambda_{y_{81}} = 0 & \lambda_{y_{82}} \end{pmatrix} * \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \\ \varepsilon_{7} \\ \varepsilon_{8} \end{pmatrix}$$

Approximate zero cross-loadings

$$\begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \\ y_{6} \\ y_{7} \\ y_{8} \end{pmatrix} = \begin{pmatrix} \lambda_{y_{11}} = 1 & \lambda_{y_{12}} \approx 0 \\ \lambda_{y_{21}} & \lambda_{y_{22}} \approx 0 \\ \lambda_{y_{31}} & \lambda_{y_{32}} \approx 0 \\ \lambda_{y_{41}} & \lambda_{y_{42}} \approx 0 \\ \lambda_{y_{51}} \approx 0 & \lambda_{y_{52}} = 1 \\ \lambda_{y_{61}} \approx 0 & \lambda_{y_{62}} \\ \lambda_{y_{71}} \approx 0 & \lambda_{y_{72}} \\ \lambda_{y_{81}} \approx 0 & \lambda_{y_{82}} \end{pmatrix} * \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \\ \varepsilon_{7} \\ \varepsilon_{8} \end{pmatrix}$$
(5)

Seddig, Daniel (UZH)

(4)

- Measurement invariance
- Cross-loadings

Illustration

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

- Measurement invariance
- Cross-loadings

2

Illustration

Seddig, Daniel (UZH)

Substantive question

- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

Seddig, Daniel (UZH)

Approximate MI and zero CLs

07.04.2016, Zurich

- < A

- Hedonism: Pleasure and sensuous gratification
- Stimulation: Excitement, novelty, and challenge in life
- Hedonism/Stimulation \leftrightarrow Delinquent Peer Groups
- Development: as adolescents interest in both dimensions decreases, associations with delinquent peer groups decreases

- Measurement invariance
- Cross-loadings

Illustration

Seddig, Daniel (UZH)

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

- "Crimoc-study"; German criminological panel study
- Panel data; *n*=357 male respondents; ages 14 to 20
- Beliefs about hedonism/stimulation (scaled 1-5):
 - **(**) h_1 : understanding for people who do what they desire
 - 2 h2: need for excitement
 - \bullet h3: living a life of pleasure
- Association with violent peer group (scaled 1-5):
 - **1** g_1 : group enforces interests with force
 - **2** $g_{2:}$ group involved in brawls

- Measurement invariance
- Cross-loadings

Illustration

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

Seddig, Daniel (UZH)

Illustration Cross-loadings: BCFA

Figure 2: CFA with cross-loadings

Approximate MI and zero CLs

∃ >

Table 1: BCFA model assessment for age 18 (n=357)

Prior (λ_{CL})	BIC	DIC	PPP
\sim N(0,0.000)	5021	4958	0.030
$\sim N(0,0.001)$	5045	4953	0.102
\sim N(0,0.010)	5033	4944	0.453
\sim N(0,0.050)	5031	4943	0.509
\sim N(0,0.100)	5031	4943	0.512

Note: BIC = Bayesian information criterion; DIC = deviance information criterion; PPP = posterior predictive p-value.

★ Ξ >

Illustration Cross-loadings: BCFA with $\sim N$ (0,0.010)

		Posterior	One-Tailed	95%	С.І.
E	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%
group_18 BY					
g1_18	1.000	0.000	0.000	1.000	1.000
g2_18	0.856	0.159	0.000	0.652	1.242
h1_18	-0.063	0.087	0.233	-0.235	0.104
h2_18	0.152	0.079	0.034	-0.012	0.297
h3_18	-0.012	0.076	0.438	-0.167	0.133
hedo_18 BY					
h1_18	1.000	0.000	0.000	1.000	1.000
h2_18	0.563	0.168	0.000	0.293	0.951
h3_18	0.572	0.153	0.000	0.316	0.919
g1_18	0.002	0.083	0.492	-0.158	0.168
g2_18	0.004	0.077	0.477	-0.156	0.151
STDYX Standa	ardization				
hedo_18 WIT	Н				
group_18	0.404	0.118	0.002	0.145	0.605

Seddig, Daniel (UZH)

Approximate MI and zero CLs

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

Illustration Cross-loadings: Posterior distribution of cross-loading for item "h2 18"

- Measurement invariance
- Cross-loadings

Illustration

Seddig, Daniel (UZH)

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

Illustration Univariate LGM

Figure 3: LGMs for *hedo* and *group*

Seddig, Daniel (UZH)

Approximate MI and zero CLs

▲ ■
 ● ■
 ● ○
 07.04.2016, Zurich

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Table 2: Univariate LGM assessment with scalar MI (n=357)

	hedo				group		
Mode	Prior (λ_{diff})	BIC	DIC	PPP	BIC	DIC	PPP
Exact	$\sim \mathbb{N}(0, 0.000)$	12262	12092	0.010	6057	5934	0.381
Appr.	\sim N(0,0.001)	12337	12073	0.183	6121	5933	0.458
	\sim N(0,0.010)	12331	12072	0.252	6117	5933	0.543
	\sim N(0,0.050)	12329	12070	0.263	6116	5930	0.545
Partial	$\sim N(0,0.000)$	12251	12078	0.071	-	-	-

Note: BIC = Bayesian information criterion; DIC = deviance information criterion; PPP = posterior predictive p-value.

(日) (四) (日) (日) (日)

Illustration

Hedonism: univariate LGM factor loadings with $\sim N(0, 0.010)$

_		Posterior	One-Tailed	95%	C.I.
Es	stimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%
hedo_14 BY					
h1_14	1.000	0.000	0.000	1.000	1.000
h2_14	0.694	0.089	0.000	0.531	0.882
h3_14	0.759	0.099	0.000	0.578	0.969
hedo_16 BY					
h1_16	0.970	0.042	0.000	0.890	1.054
h2_16	0.745	0.091	0.000	0.578	0.935
h3_16	0.789	0.100	0.000	0.608	1.001
hedo_18 BY					
h1_18	0.953	0.052	0.000	0.855	1.057
h2_18	0.709	0.096	0.000	0.535	0.912
h3_18	0.788	0.106	0.000	0.596	1.012
hedo 20 BY					
h1 20	0.922	0.065	0.000	0.801	1.056
h2 20	0.702	0.101	0.000	0.517	0.917
h3 20	0.829	0.112	0.000	0.625	1.066
			•		< ≣ ► ≣ • ০ ৭
Seddig. Danie	l (UZH)	Approximate M	MI and zero CLs	0	7.04.2016. Zurich

Illustration

Hedonism: univariate LGM factor loadings with $\sim N(0, 0.050)$

-		Posterior	One-Tailed	95%	C.I.
E:	stimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%
hedo_14 BY					
h1_14	1.000	0.000	0.000	1.000	1.000
h2_14	0.706	0.097	0.000	0.530	0.910
h3_14	0.773	0.107	0.000	0.581	0.999
hedo_16 BY					
h1_16	0.939	0.082	0.000	0.777	1.101
h2_16	0.746	0.102	0.000	0.560	0.960
h3_16	0.780	0.110	0.000	0.581	1.014
hedo_18 BY					
h1_18	0.962	0.110	0.000	0.742	1.173
h2_18	0.680	0.119	0.000	0.465	0.929
h3_18	0.770	0.133	0.000	0.529	1.049
hedo_20 BY					
_ h1_20	0.868	0.138	0.000	0.602	1.138
h2 20	0.663	0.137	0.000	0.416	0.954
h3_20	0.798	0.156	0.000	0.511	1.119
			4		<
Seddig. Danie	l (UZH)	Approximate M	VII and zero CLs	0	7.04.2016. Zurich

- Measurement invariance
- Cross-loadings

Illustration

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model

Illustration Multivariate LGM

Figure 4: Multivariate LGM with cross-loadings

Seddig, Daniel (UZH)

Approximate MI and zero CLs

イロト イポト イヨト イヨト

Table 3:	Multivariate	LGM	assessment	with	scalar	MI	(n=357))
----------	--------------	-----	------------	------	--------	----	---------	---

Mode	Prior $(\lambda_{diff} / au_{diff})$	Prior (CLs)	BIC	DIC	PPP
Exact MI w/o CLs	~N(0,0.000)	$\sim N(0, 0.000)$	18232	17971	0.000
Exact MI w/ CLs	~N(0,0.000)	$\sim N(0, 0.010)$	18267	17918	0.171
Appr. MI w/o CLs	~N(0,0.010)	~N(0,0.000)	18414	17954	0.025
Appr. MI w/ CLs	~N(0,0.010)	~N(0,0.010)	18479	17919	0.372

Note: BIC = Bayesian information criterion; DIC = deviance information criterion; PPP = posterior predictive p-value.

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

		Posterior	One-Tailed	95%	C.I.
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%
Means					
I_HE	2.967	0.124	0.000	2.724	3.211
S_HE	-0.118	0.073	0.059	-0.253	0.032
I_GR	1.541	0.190	0.000	1.173	1.917
S_GR	-0.091	0.094	0.164	-0.275	0.100
STDYX Sta	ndardizatio	n			
I_HE WI	ГН				
I_GR	0.580	0.142	0.000	0.284	0.833
S_HE WI	ГН				
S_GR	0.463	0.194	0.010	0.071	0.828

Seddig, Daniel (UZH)

Approximate MI and zero CLs

07.04.2016, Zurich

・ロト ・四ト ・ヨト ・

э

Illustration Multivariate LGM: Estimates

Fatimata	Posterior	One-Tailed	95%	C.I.
Estimate	5.0.	P-Value	Lower 2.5%	opper 2.5%
Means				
I_HE 2.967	0.124	0.000	2.724	3.211
S_HE -0.118	0.073	0.059	-0.253	0.032
I_GR 1.541	0.190	0.000	1.173	1.917
S_GR -0.091	0.094	0.164	-0.275	0.100
STDYX Standardization				
I_HE WITH				
I_GR 0.580	0.142	0.000	0.284	0.833
(ML = 0.778)				
S_HE WITH				
S_GR 0.463	0.194	0.010	0.071	0.828
(ML = 0.680)				

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- BSEM useful
- but...
 - Prior choice may be an obstacle
 - Compromise between fit and precision
 - Giving up parsimony vs. using prior assumptions

Daniel Seddig Institute of Sociology seddig@soziologie.uzh.ch

Seddig, Daniel (UZH)

Approximate MI and zero CLs

Appendix Multivariate LGM: Posterior distribution of intercept mean (hedonism)

Seddig, Daniel (UZH)

Approximate MI and zero CLs

Appendix Multivariate LGM: Posterior distribution of slope mean (hedonism)

Appendix Multivariate LGM: Posterior distribution of intercept mean (peer group)

Appendix Multivariate LGM: Posterior distribution of slope mean (group)

Seddig, Daniel (UZH)

Appendix Multivariate LGM: Posterior distribution of intercept correlation

Appendix Multivariate LGM: Posterior distribution of slope correlation


```
Analysis:
   Estimator=Bayes;
   Chains=2;
   Proc=2;
   Biterations=1000000(200000);
   Bseed=3010;
```

∃ ▶ ∢

Figure 5: Potential scale reduction factor (PSR) plot

Seddig, Daniel (UZH)

Approximate MI and zero CLs

```
Model:
  gr14 by bc0054@1 bc0056 (a12) !marker item "g1" lambda
  bl0054 bl0069 bl0076 (cl1-cl3); !cross-loadings
  [bc0054@0]; !marker item "g1" tau
  [bc0056] (b12);
  gr16 by dc0054* dc0056* (a21-a22)
  d10054* d10069* d10076* (cl4-cl6); !cross-loadings
  [dc0054 dc0056] (b21-b22);
  gr18 by fc0054* fc0056* (a31-a32)
  f10054* f10069* f10076* (cl7-cl9); !cross-loadings
  [fc0054 fc0056] (b31-b32);
  gr20 by hc0054* hc0056* (a41-a42)
  h10054* h10069* h10076* (cl10-cl12); !cross-loadings
  [hc0054 hc0056] (b41-b42);
```

イロト 不得下 イヨト イヨト ヨー シック

```
he14 by bl0054@1 bl0069 bl0076 (c12-c13)
bc0054 bc0056 (cl13-cl14):
[b10054@0]:
[b10069 b10076] (d12-d13);
he16 by d10054* d10069* d10076* (c21-c23)
dc0054* dc0056* (cl15-cl16);
[d10054 d10069 d10076] (d21-d23);
he18 by f10054* f10069* f10076* (c31-c33)
fc0054* fc0056* (cl17-cl18);
[f10054 f10069 f10076] (d31-d33);
he20 by h10054* h10069* h10076* (c41-c43)
hc0054* hc0056* (cl19-cl20);
[h10054 h10069 h10076] (d41-d43);
i_gr s_gr | gr14@0 gr16@1 gr18@2 gr20@3;
[i_gr s_gr];
i_he s_he | he14@0 he16@1 he18@2 he20@3;
[i_he s_he];
```

(日) (周) (三) (三) (三) (○)

Appendix Mplus Input: approximate MI

```
Model priors:
  Do(2,2) diff(a1#-a4#)~N(0,0.01); !"do diff" for lambda -differences
  Do(2,2) diff(b1#-b4#)~N(0,0.01); !"do diff" for tau-differences
  a21~N(1,0.01); !priors for marker item "g1" lambda
  a31~N(1,0.01);
  a41~N(1,0.01);
  b21~N(0,0.01); !priors for marker item "g1" tau
  b31~N(0,0.01);
  b41~N(0,0.01);
  Do(2.3) diff(c1#-c4#)~N(0.0.01);
  Do(2,3) diff(d1#-d4#)^{N}(0,0.01);
  c21~N(1,0.01);
  c31~N(1,0.01);
  c41^{N}(1,0.01);
  d21~N(0,0.01);
  d31^{N}(0, 0.01);
  d41~N(0.0.01):
                                                  ・得下 ・ヨト ・ヨト ・ヨ
```

Appendix Mplus Input: approximate MI

```
Model constraint:
  NEW(a11 ave1 diff1 1-diff1 4): !calculation of differences between
  a11=1;
                                    !marker item lambdas and their
  ave1 = (a11 + a21 + a31 + a41)/4:
                                    !average across time points
  Do(1,4) diff1_#=a#1-ave1;
  NEW(b11 ave2 diff2 1-diff2 4): !calculation of differences between
  b11=0;
                                    !marker item taus and their
  ave2 = (b11+b21+b31+b41)/4:
                                    !average across time points
  Do(1,4) diff2_#=b#1-ave2;
  NEW(c11 ave3 diff3 1-diff3 4):
  c11=1:
  ave3 = (c11 + c21 + c31 + c41)/4:
  Do(1.4) diff3 #=c#1-ave3:
  NEW(d11 ave4 diff4 1-diff4 4);
  d11=0:
  ave4 = (d11 + d21 + d31 + d41)/4:
  Do(1.4) diff4_#=d#1-ave4;
```

A B A A B A