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Partial least squares path modeling

Traditional partial least squares [Lohmöller, 2013]

is a variance-based estimator for SEM,

creates composites as proxies for the theoretical constructs, and

can be expressed in terms of indicators correlation matrices.
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PLS estimation procedure

All indicators x are standardized.

Indicators which belong to one common factor or one composite ηj
are grouped to form block j with j = 1, ..., J.

The empirical correlation matrix Sjj of dimension (Kj × Kj) contains
the correlations between the indicators of block j .
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PLS estimation procedure

Traditional PLS estimation procedure consists of 3 parts.

1 Initial arbitrary outer weights ŵ
(0)
j of dimension (Kj × 1) are chosen

for each block j , where ŵ
(0)′
j Sjj ŵ

(0)
j = 1.

2 Iterative PLS algorithm starts to obtain the stable final outer weights
ŵj with j = 1, ..., J.

3 The stable weights are used to built final composites stand-ins for the
constructs, and the parameters of the measurement model and the
structural model are estimated by OLS.
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2. part: iterative algorithm

The iterative algorithm consists of four steps:

1 Outer estimation of ηj : η̂
(i)
j = Xj ŵ

(i)
j with ŵ

(i)′
j Sjj ŵ

(i)
j = 1

2 Inner estimation of ηj : η̃
(i)
j =

J∑
j ′=1

e
(i)
jj ′ η̂

(i)
j ′ , where

e
(i)
jj ′ ={

sign(ŵ
(i)′
j Sjj ′ŵ

(i)
j ′ ), for j 6= j ′ if construct j and j ′ are adjacent

0, otherwise,

Again, inner estimates are scaled to variance of one.

(i) : iteration counter
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2. part: iterative algorithm

3 New outer weights are calculated:

Mode A (correlation weights):

ŵ
(i+1)
j ∝

J∑
j′=1

Sjj′ŵ
(i)
j′ e

(i)
jj′ with ŵ

(i+1)′
j Sjj ŵ

(i+1)
j = 1.

Mode B (regression weights):

ŵ
(i+1)
j ∝ S−1jj

J∑
j′=1

Sjj′ŵ
(i)
j′ e

(i)
jj′ with ŵ

(i+1)′
j Sjj ŵ

(i+1)
j = 1.

4 Check for convergence: final weights ŵj are obtained if weights do
not significantly change.

(i) : iteration counter
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3. part: estimation of the model parameters

In the last part, final composites are built, η̂j = Xŵj , and the model
parameters are estimated:

Parameters of the measurement model:

Composites: estimated weights equal the final weights
Common factors: factor loadings are estimated by OLS in accordance
to the measurement model.

Parameters of the structural model are estimated by OLS.
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Consistent partial least squares (PLSc)

PLS estimates are biased in the case of constructs modeled as common
factors.
→ Consistent partial least squares produce consistent estimates for
common factor models using a correction factor
[Dijkstra, T.K. & Henseler, J., 2015]
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Consistent partial least squares (PLSc)

The correction factor can be calculated as follows:

ĉ2j =
ŵ ′j (Sjj − diag(Sjj))ŵj

ŵ ′j (ŵj ŵ
′
j − diag(ŵj ŵ

′
j ))ŵj

.

Consistent factor loading estimates:

λ̂j = ĉj ŵj

Consistent correlation estimates between common factors:

̂cor(ηj , ηj ′) =
ŵ ′jSjj ′ŵj ′√

ĉ2j ŵ
′
j ŵj ĉ2j ′ŵ

′
j ′ŵj ′
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Suggestions provided by the literature

Replace ordinal categorical indicator by a dummy matrix

Use correspondence analysis to quantify the ordinal categorical
indicator [Betzin, J. & Henseler, J., 2005]

Partial maximum likelihood partial least squares
[Jakobowicz, E.& Derquenne, C., 2007]

Non-metric partial least squares [Russolillo, G., 2012]

Ordinal partial least squares [Boari, G., & Cantaluppi, G., 2012]

To our knowledge, no approaches for PLSc dealing with ordinal categorical
indicators.
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Ordinal partial least squares (OrdPLS)

Ordinal partial least squares (OrdPLS) [Boari, G., & Cantaluppi, G., 2012]
uses the polychoric correlation as input for the PLS algorithm instead of
the product-moment correlation.
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Polychoric correlation

Assumption: An ordinal categorical indicator x is the result of a
polytomized standard normally distributed random variable x∗

. . . . . .

xix1 xs

τiτi−1τ1 τs−1

x∗

φ(x∗)

x = xi if τi−1 ≤ x∗ < τi i = 1, ..., s

Polychoric correlation [Olsson, U., 1979, Poon, W.-Y. & Lee, S.-Y., 1987]:
estimated correlation between the underlying latent variables
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Consistent ordinal partial least squares (OrdPLSc)

OrdPLSc combines the idea of OrdPLS and PLSc

Corrects for attenuation if common factors are included in the model

Uses the polychoric correlation as input for the PLS algorithm

Correction
for attenuation

(common factor)
OLS/2SLS

PLS
algorithm

Determining
polychoric
correlation
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Ordinal consistent partial least squares (OrdPLSc)

Traditional PLS PLSc

OrdPLS OrdPLScYes

No

No Yes

Corrects for attenuation
in the case of common factors
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Monte Carlo simulation

We considered a population model with three common factors and varied:

Number of categories: 2, 3, 5, and 7 categories

Skewness of the indicators

We create 1000 data sets (N = 500) for each design.
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Population model with three common factors

x1 x2 x3 y11 y12 y13 y21 y22 y23

ξ η1 η2

ε1 ε2 ε3 δ11 δ12 δ13 δ21 δ22 δ23

ζ1 ζ2

λx1 = .8
λx2 = .7

λx3 = .6 λy11 = .7
λy12 = .7

λy13 = .7 λy21 = .5
λy22 = .7

λy23 = .9

γ1 = .6 β = .6

γ2 = 0
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Skewness of indicators
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Results: bias of the path coefficient estimates
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Results: bias of the factor loading estimates
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Results: inadmissible results

Model with only common factors Mixed model
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Summary

OrdPLSc and WLSMV led to almost the same results.

PLSc path coefficient estimates behaved surprisingly well, while factor
loadings estimates were biased.

OrdPLS estimates were fairly constantly biased .

The bias of PLS estimates converged to the bias of OrdPLS estimates
with an increasing number of categories.

OrdPLSc April 7, 2016 28 / 31



Thank you!
Questions/Comments?
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