## Detection of misspecifications in Mplus

## Daniel Oberski

## Research and Expertise Center for Survey Methodology Universitat Pompeu Fabra, Spain



Mini conference Measurement invariance: Methods, problems and further directions Zürich, 16 July 2011

# InTRODUCTION 

Introduction

ExAMPLE 1

THE PROBLEM AND A SOLUTION

EXAMPLE 2

Conclusions

## Example 1: Correlations between genetic POLYMORPHISMS

- Rioux et al., Nature Genetics 29, 223-228 (2001)


## EXAMPLE 1: CORRELATIONS betWEEN GENETIC POLYMORPHISMS

- Rioux et al., Nature Genetics 29, 223-228 (2001)
- Crohn disease is an inflammatory disease of the intestines. Causes abdominal pain, diarrhea, and vomiting. The body's immune system attacks the gastrointestinal tract, causing inflammation.


## EXAMPLE 1: CORRELATIONS BETWEEN GENETIC POLYMORPHISMS

- Rioux et al., Nature Genetics 29, 223-228 (2001)
- Crohn disease is an inflammatory disease of the intestines. Causes abdominal pain, diarrhea, and vomiting. The body's immune system attacks the gastrointestinal tract, causing inflammation.
- Gene "IBD5" is thought to increase risk of Crohn disease


## EXAMPLE 1: CORRELATIONS BETWEEN GENETIC POLYMORPHISMS

- Rioux et al., Nature Genetics 29, 223-228 (2001)
- Crohn disease is an inflammatory disease of the intestines. Causes abdominal pain, diarrhea, and vomiting. The body's immune system attacks the gastrointestinal tract, causing inflammation.
- Gene "IBD5" is thought to increase risk of Crohn disease
- Unfortunately gene "IBD5" is difficult (expensive) to detect


## EXAMPLE 1: CORRELATIONS BETWEEN GENETIC POLYMORPHISMS

- Rioux et al., Nature Genetics 29, 223-228 (2001)
- Crohn disease is an inflammatory disease of the intestines. Causes abdominal pain, diarrhea, and vomiting. The body's immune system attacks the gastrointestinal tract, causing inflammation.
- Gene "IBD5" is thought to increase risk of Crohn disease
- Unfortunately gene "IBD5" is difficult (expensive) to detect
- Fortunately, however, there are lots of mutations that can easily be detected, which just happen to be strongly related to the occurence of IBD5.


## Example 1: Correlations between genetic POLYMORPHISMS

- Rioux et al., Nature Genetics 29, 223-228 (2001)
- Crohn disease is an inflammatory disease of the intestines. Causes abdominal pain, diarrhea, and vomiting. The body's immune system attacks the gastrointestinal tract, causing inflammation.
- Gene "IBD5" is thought to increase risk of Crohn disease
- Unfortunately gene "IBD5" is difficult (expensive) to detect
- Fortunately, however, there are lots of mutations that can easily be detected, which just happen to be strongly related to the occurence of IBD5.
- This is called "linkage disequilibrium" (don't ask me why)


## Example 1: Correlations between genetic POLYMORPHISMS

- Rioux et al., Nature Genetics 29, 223-228 (2001)
- Crohn disease is an inflammatory disease of the intestines. Causes abdominal pain, diarrhea, and vomiting. The body's immune system attacks the gastrointestinal tract, causing inflammation.
- Gene "IBD5" is thought to increase risk of Crohn disease
- Unfortunately gene "IBD5" is difficult (expensive) to detect
- Fortunately, however, there are lots of mutations that can easily be detected, which just happen to be strongly related to the occurence of IBD5.
- This is called "linkage disequilibrium" (don't ask me why)
- Can we use those other mutations ("SNP's") as indicators of the presence of IBD5?


## Example 1: Correlations between genetic POLYMORPHISMS

- Can we use those other mutations ("SNP's") as indicators of the presence of IBD5?


## Alternative models

## Alternative models



## Alternative models



## The restricted model estimated with Mplus

## The restricted model estimated with Mplus



## The restricted model estimated with Mplus



## The restricted model estimated with Mplus

- Chisquare: 32.4, df: 2, p: 0.0000



## The restricted model estimated with Mplus

- Chisquare: 32.4, df: 2, p: 0.0000
- CFI: 0.912


## The restricted model estimated with Mplus

- Chisquare: 32.4, df: 2, p: 0.0000
- CFI: 0.912
- TLI: 0.735


## The restricted model estimated with Mplus

- Chisquare: $32.4, d f: 2, \mathrm{p}$ : 0.0000
- CFI: 0.912
- TLI: 0.735
- RMSEA: 0.616 (0.441, 0.812)


## The restricted model estimated with Mplus

- Chisquare: $32.4, d f: 2, \mathrm{p}$ : 0.0000
- CFI: 0.912
- TLI: 0.735
- RMSEA: 0.616 (0.441, 0.812)
- SRMR: 0.010


## The restricted model estimated with Mplus

- Chisquare: $32.4, d f: 2, \mathrm{p}$ : 0.0000
- CFI: 0.912
- TLI: 0.735
- RMSEA: 0.616 (0.441, 0.812)
- SRMR: 0.010
- Modification index (MI) of restricted-to-1-correlation:


## The restricted model estimated with Mplus

- Chisquare: $32.4, d f: 2, \mathrm{p}$ : 0.0000
- CFI: 0.912
- TLI: 0.735
- RMSEA: 0.616 (0.441, 0.812)
- SRMR: 0.010
- Modification index (MI) of restricted-to-1-correlation: MI: 4.589 ( $p=0.032$ )


## The restricted model estimated with Mplus

- Chisquare: $32.4, d f: 2, \mathrm{p}$ : 0.0000
- CFI: 0.912
- TLI: 0.735
- RMSEA: 0.616 (0.441, 0.812)
- SRMR: 0.010
- Modification index (MI) of restricted-to-1-correlation: MI: $4.589(p=0.032)$
EPC: -0.014


## The restricted model estimated with Mplus

- Chisquare: $32.4, d f: 2, \mathrm{p}$ : 0.0000
- CFI: 0.912
- TLI: 0.735
- RMSEA: 0.616 (0.441, 0.812)
- SRMR: 0.010
- Modification index (MI) of restricted-to-1-correlation: MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a correlation of
$1-0.014=0.986$ )


## The unrestricted model estimated with Mplus

## The unrestricted model estimated with Mplus



## The unrestricted model estimated with Mplus



## The unrestricted model estimated with Mplus



- Chisquare: 27.4, df: 1, p: 0.0000


## The unrestricted model estimated with Mplus



- Chisquare: 27.4, df: 1, p: 0.0000
- $\Delta$ Chisquare: 5.0, df: 1, p: 0.025


## The unrestricted model estimated with Mplus



- Chisquare: 27.4, df: 1, p: 0.0000
- $\Delta$ Chisquare: 5.0, df: 1, p: 0.025
- CFI: 0.923


## The unrestricted model estimated with Mplus



- Chisquare: 27.4, df: 1, p: 0.0000
- $\Delta$ Chisquare: 5.0, df: 1, p: 0.025
- CFI: 0.923
- TLI: 0.540


## The unrestricted model estimated with Mplus



- Chisquare: 27.4, df: 1, p: 0.0000
- $\Delta$ Chisquare: 5.0, df: 1, p: 0.025
- CFI: 0.923
- TLI: 0.540
- RMSEA: 0.812 (0.567, 1.087)


## The unrestricted model estimated with Mplus



- Chisquare: 27.4, df: 1, p: 0.0000
- $\Delta$ Chisquare: 5.0, df: 1, p: 0.025
- CFI: 0.923
- TLI: 0.540
- RMSEA: 0.812 (0.567, 1.087)
- SRMR: 0.012


## CAN WE CONSIDER ALL FOUR VARIABLES AS

 INDICATORS OF THE SAME THING?

- What shall we decide?


## CAN WE CONSIDER ALL FOUR VARIABLES AS

 INDICATORS OF THE SAME THING?

- What shall we decide?
- If the correlation between the two factors is suffiently close to 1 (say $>.9$ ), we will be happy to save a couple of million euros in research money.


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?



- What shall we decide?
- If the correlation between the two factors is suffiently close to 1 (say $>.9$ ), we will be happy to save a couple of million euros in research money.
- The correlation is significantly different from 1.


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?



- What shall we decide?
- If the correlation between the two factors is suffiently close to 1 (say $>.9$ ), we will be happy to save a couple of million euros in research money.
- The correlation is significantly different from 1.
- When estimated it is 0.98 .


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?



- What shall we decide?
- If the correlation between the two factors is suffiently close to 1 (say $>.9$ ), we will be happy to save a couple of million euros in research money.
- The correlation is significantly different from 1.
- When estimated it is 0.98 .
- But according to all criteria, the model should be rejected.


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?



- What shall we decide?
- If the correlation between the two factors is suffiently close to 1 (say $>.9$ ), we will be happy to save a couple of million euros in research money.
- The correlation is significantly different from 1.
- When estimated it is 0.98 .
- But according to all criteria, the model should be rejected.
- This is not what we wanted!


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?



- What shall we decide?
- If the correlation between the two factors is suffiently close to 1 (say > .9), we will be happy to save a couple of million euros in research money.
- The correlation is significantly different from 1.
- When estimated it is 0.98 .
- But according to all criteria, the model should be rejected.
- This is not what we wanted!
- Whether we used $\chi^{2}, \Delta \chi^{2}$, or any of the fit measures, we would make a wrong decision.

CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?


# CAN WE CONSIDER ALL FOUR VARIABLES AS 

 INDICATORS OF THE SAME THING?

Restricted model:

## CAN WE CONSIDER ALL FOUR VARIABLES AS

 INDICATORS OF THE SAME THING?

Restricted model:
MI: $4.589(p=0.032)$

CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?


Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014

CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?

Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a correlation of
$1-0.014=0.986$ )

# CAN WE CONSIDER ALL FOUR VARIABLES AS 

 INDICATORS OF THE SAME THING?Restricted model:
Unrestricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a correlation of
$1-0.014=0.986$ )

## CAN WE CONSIDER ALL FOUR VARIABLES AS

 INDICATORS OF THE SAME THING?Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a correlation of
$1-0.014=0.986$ )

Unrestricted model:

- Difference in model chi-squares:

$$
\Delta \chi^{2}=5.0(p=0.025)
$$

## CAN WE CONSIDER ALL FOUR VARIABLES AS

 INDICATORS OF THE SAME THING?Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a correlation of
$1-0.014=0.986$ )

Unrestricted model:

- Difference in model chi-squares:

$$
\Delta \chi^{2}=5.0(p=0.025)
$$

- Estimate of correlation in unrestricted model: 0.981


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?

## 1

Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a
correlation of
$1-0.014=0.986$ )

Unrestricted model:

- Difference in model chi-squares:

$$
\Delta \chi^{2}=5.0(p=0.025)
$$

- Estimate of correlation in unrestricted model: 0.981
- The MI is approximately equal to the improvement in chi-square when correlation is freed


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?



Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a
correlation of
$1-0.014=0.986$ )

Unrestricted model:

- Difference in model chi-squares:

$$
\Delta \chi^{2}=5.0(p=0.025)
$$

- Estimate of correlation in unrestricted model: 0.981
- The MI is approximately equal to the improvement in chi-square when correlation is freed
- The EPC is approximately equal to the misspecification (here $0.981-1=-0.019 \approx-0.014$ )


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?



Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a
correlation of
$1-0.014=0.986$ )

Unrestricted model:

- Difference in model chi-squares:

$$
\Delta \chi^{2}=5.0(p=0.025)
$$

- Estimate of correlation in unrestricted model: 0.981
- The MI is approximately equal to the improvement in chi-square when correlation is freed
- The EPC is approximately equal to the misspecification (here $0.981-1=-0.019 \approx-0.014$ )
- This is true in general! (Buse 1982; Satorra 1989)


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?



Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a
correlation of
$1-0.014=0.986$ )

Unrestricted model:

- Difference in model chi-squares:

$$
\Delta \chi^{2}=5.0(p=0.025)
$$

- Estimate of correlation in unrestricted model: 0.981
- The MI is approximately equal to the improvement in chi-square when correlation is freed
- The EPC is approximately equal to the misspecification (here $0.981-1=-0.019 \approx-0.014$ )
- This is true in general! (Buse 1982; Satorra 1989)


## CAN WE CONSIDER ALL FOUR VARIABLES AS INDICATORS OF THE SAME THING?

Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a
correlation of
$1-0.014=0.986$ )

- The MI is approximately equal to the improvement in chi-square when correlation is freed
- The EPC is approximately equal to the misspecification (here $0.981-1=-0.019 \approx-0.014$ )
- This is true in general! (Buse 1982; Satorra 1989)


## CAN WE CONSIDER ALL FOUR VARIABLES AS

 INDICATORS OF THE SAME THING?Restricted model:
MI: $4.589(p=0.032)$
EPC: -0.014
(this would imply a
correlation of
$1-0.014=0.986$ )

- The MI is approximately equal to the improvement in chi-square when correlation is freed
- The EPC is approximately equal to the misspecification (here $0.981-1=-0.019 \approx-0.014$ )
- This is true in general! (Buse 1982; Satorra 1989)


## What is the problem?

- The misspecification of -0.014 is not substantively relevant


## What IS THE PROBLEM?

- The misspecification of -0.014 is not substantively relevant
- The tests are very sensitive to this very small misspecification


## WhAT IS THE PROBLEM?

- The misspecification of -0.014 is not substantively relevant
- The tests are very sensitive to this very small misspecification
- It appears the power of the test is very high


## WhAT IS THE PROBLEM?

- The misspecification of -0.014 is not substantively relevant
- The tests are very sensitive to this very small misspecification
- It appears the power of the test is very high
- Conclusion: when the power of the test is high and the test statistics indicate the model should be rejected, the EPC must be inspected.


## What is the problem?

- The misspecification of -0.014 is not substantively relevant
- The tests are very sensitive to this very small misspecification
- It appears the power of the test is very high
- Conclusion: when the power of the test is high and the test statistics indicate the model should be rejected, the EPC must be inspected.
- If the misspecification (EPC) does not exceed some threshold of acceptability, the model is not misspecified


## What is the problem?

- The misspecification of -0.014 is not substantively relevant
- The tests are very sensitive to this very small misspecification
- It appears the power of the test is very high
- Conclusion: when the power of the test is high and the test statistics indicate the model should be rejected, the EPC must be inspected.
- If the misspecification (EPC) does not exceed some threshold of acceptability, the model is not misspecified
- On the other hand, if the EPC does exceed the threshold, the model is misspecified


## DECISION RULES

|  | High power | Low power |
| :--- | :--- | :--- |
| Significant MI | Inspect EPC | Misspecification |
| Nonsignificant MI | No misspecification | Inconclusive |

## DECISION RULES

|  | High power | Low power |
| :--- | :--- | :--- |
| Significant MI | Inspect EPC | Misspecification |
| Nonsignificant MI | No misspecification | Inconclusive |

How do we obtain the power?

## PoWER

- Exercise: guess the sample size in the previous example ...


## Power

- Exercise: guess the sample size in the previous example ...
- Hint: the power of the test was very high (close to 1.0)


## PoWER

- Exercise: guess the sample size in the previous example ...
- Hint: the power of the test was very high (close to 1.0)
- The correct answer is:


## Power

- Exercise: guess the sample size in the previous example ...
- Hint: the power of the test was very high (close to 1.0)
- The correct answer is:
- $n=40$


## POWER

- Exercise: guess the sample size in the previous example ...
- Hint: the power of the test was very high (close to 1.0)
- The correct answer is:
- $n=40$
- The high power is due to the very large loadings


## POWER

- Exercise: guess the sample size in the previous example ...
- Hint: the power of the test was very high (close to 1.0)
- The correct answer is:
- $n=40$
- The high power is due to the very large loadings
- So power does not just depend on sample size. Things are not so simple.


## POWER

The power of the modification index test to detect a certain misspecification (say, $\delta$ ) can be determined just from the value of the MI and the EPC.

Saris, W.E., A. Satorra, \& W. van der Veld (2009). Testing Structural Equation Models or Detection of Misspecifications?, Structural Equation Modeling, 16 pp. 561-582.


- The program Jrule for Mplus (Oberski 2010) helps you make decisions about misspecifications
- The program Jrule for Mplus (Oberski 2010) helps you make decisions about misspecifications
- It reads in your Mplus output file and gives information about MI, EPC, the power of the MI test, and the recommended decision based on your own criteria
- The program Jrule for Mplus (Oberski 2010) helps you make decisions about misspecifications
- It reads in your Mplus output file and gives information about MI, EPC, the power of the MI test, and the recommended decision based on your own criteria
- It can be downloaded for free from http://wiki.github.com/daob/JruleMplus/



## EXAMPLE 2: PERSONALITY TRAITS AND VOTING

- "Big Five" personality traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism


## Example 2: Personality traits and voting

- "Big Five" personality traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism
- Correlated with voting


## EXAMPLE 2: PERSONALITY TRAITS AND VOTING

- "Big Five" personality traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism
- Correlated with voting
- Hypothesized to affect voting only indirectly, through things like "a sense that voting is a duty", "political efficacy" (Gallego \& Oberski, frth)


## Highly simplified path model


(all regression equations are also controlled for age, sex, and education -- not shown)

## Highly simplified path model


(all regression equations are also controlled for age, sex, and education -- not shown)
Should we introduce a path from
Openness/Conscientiousness/Extraversion directly to Voting?

## Highly simplified Path model


(all regression equations are also controlled for age, sex, and education -- not shown)

Should we introduce a path from
Openness/Conscientiousness/Extraversion directly to Voting?
I will conclude we should if the effect is bigger than 0.05 .

## THE MEDIATION MODEL ESTIMATED WITH MPLUS

## THE MEDIATION MODEL ESTIMATED WITH MPLUS


(all regression equations are also controlled for age, sex, and education -- not shown)

## THE MEDIATION MODEL ESTIMATED WITH MPLUS


(all regression equations are also controlled for age, sex, and education -- not shown)

## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$



## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$
- CFI: 0.965

(all regression equations are also controlled for age, sex, and education -- not shown)


## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$
- CFI: 0.965

- TLI: 0.948

[^0]
## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$
- CFI: 0.965
- TLI: 0.948
- RMSEA: 0.026


## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$
- CFI: 0.965

- TLI: 0.948
- RMSEA: 0.026
- WRMR: 0.885


## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$
- CFI: 0.965

(all regression equations are also controlled for age, sex, and education -- not shown)
- TLI: 0.948
- RMSEA: 0.026
- WRMR: 0.885
- MI's and EPC's:


## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$
- CFI: 0.965

(all regression equations are also controlled for age, sex, and education -- not shown)
- TLI: 0.948
- RMSEA: 0.026
- WRMR: 0.885
- MI's and EPC's:

VOTE ON CONS MI: 1.349 ,EPC: 0.062

## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$
- CFI: 0.965

(all regression equations are also controlled for age, sex, and education -- not shown)
- TLI: 0.948
- RMSEA: 0.026
- WRMR: 0.885
- MI's and EPC's:

VOTE ON CONS MI: 1.349 ,EPC: 0.062
VOTE ON EXTR MI: 7.259**, EPC: 0.072

## THE MEDIATION MODEL ESTIMATED WITH MPLUS

- Chisquare: $12.3, d f=4^{*}$, $p=0.0152$
- CFI: 0.965

(all regression equations are also controlled for age, sex, and education -- not shown)
- TLI: 0.948
- RMSEA: 0.026
- WRMR: 0.885
- MI's and EPC's:

VOTE ON CONS MI: 1.349 ,EPC: 0.062
VOTE ON EXTR MI: 7.259**, EPC: 0.072
VOTE ON OPEN MI: 1.349 , EPC: -0.041
*df calculated for model with categorical variables (WLSMV estimator)

## CONCLUSIONS

- The model seems to fit well, except for the regression parameter "VOTE ON Extraversion".


## CONCLUSIONS

- The model seems to fit well, except for the regression parameter "VOTE ON Extraversion".
- So it seems our hypothesis that personality traits affect voting only indirectly is not rejected.


## CONCLUSIONS

- The model seems to fit well, except for the regression parameter "VOTE ON Extraversion".
- So it seems our hypothesis that personality traits affect voting only indirectly is not rejected.
- Hooray?



## CONCLUSIONS

- The power to detect a misspecification for Openness and Conscientiousness is very low ( 0.479 and 0.191 respectively)


## CONCLUSIONS

- The power to detect a misspecification for Openness and Conscientiousness is very low ( 0.479 and 0.191 respectively)
- Guess the sample size...


## CONCLUSIONS

- The power to detect a misspecification for Openness and Conscientiousness is very low ( 0.479 and 0.191 respectively)
- Guess the sample size...
- $n=3121$ (you probably saw that coming)


## Conclusions

- The power to detect a misspecification for Openness and Conscientiousness is very low ( 0.479 and 0.191 respectively)
- Guess the sample size...
- $n=3121$ (you probably saw that coming)
- The low power is due to small effects and the sampling design


## Conclusions

- The power to detect a misspecification for Openness and Conscientiousness is very low ( 0.479 and 0.191 respectively)
- Guess the sample size...
- $n=3121$ (you probably saw that coming)
- The low power is due to small effects and the sampling design
- The results on the possible presence of direct effects on voting from Openness and Conscientiousness can only be called inconclusive


## CONCLUSIONS

- The power to detect a misspecification for Openness and Conscientiousness is very low ( 0.479 and 0.191 respectively)
- Guess the sample size...
- $n=3121$ (you probably saw that coming)
- The low power is due to small effects and the sampling design
- The results on the possible presence of direct effects on voting from Openness and Conscientiousness can only be called inconclusive
- This means we need better measures or a better model or a bigger sample or a combination


## Overall conclusions

- Chi square, fit measures, and MI are all affected by the power of the test


## Overall conclusions

- Chi square, fit measures, and MI are all affected by the power of the test
- The power is not only a function of the sample size but can surprise you


## Overall conclusions

- Chi square, fit measures, and MI are all affected by the power of the test
- The power is not only a function of the sample size but can surprise you
- To make a correct decision, one must take into account the power of the test


## Overall conclusions

- Chi square, fit measures, and MI are all affected by the power of the test
- The power is not only a function of the sample size but can surprise you
- To make a correct decision, one must take into account the power of the test
- Saris \& a. (2009) suggest one method for doing this


## Overall conclusions

- Chi square, fit measures, and MI are all affected by the power of the test
- The power is not only a function of the sample size but can surprise you
- To make a correct decision, one must take into account the power of the test
- Saris \& a. (2009) suggest one method for doing this
- That method is implemented in the free software Jrule for Mplus (Oberski 2010)

Thank you very much for your attention!
http://wiki.github.com/daob/JruleMplus/
daniel.oberski@upf.edu
This presentation: http://daob.org/



[^0]:    (all regression equations are also controlled for age, sex, and education -- not shown)

