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» What shall we decide?

» If the correlation between the two factors is suffiently close
to 1 (say > .9), we will be happy to save a couple of million
euros in research money.

» The correlation is significantly different from 1.

» When estimated it is 0.98.

» But according to all criteria, the model should be rejected.
» This is not what we wanted!

» Whether we used x2, Ax?, or any of the fit measures, we
would make a wrong decision.
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The misspecification of -0.014 is not substantively relevant
The tests are very sensitive to this very small
misspecification

It appears the power of the test is very high

Conclusion: when the power of the test is high and the test
statistics indicate the model should be rejected, the EPC
must be inspected.

If the misspecification (EPC) does not exceed some
threshold of acceptability, the model is not misspecified
On the other hand, if the EPC does exceed the threshold,
the model is misspecified
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POWER

v

Exercise: guess the sample size in the previous example ...
Hint: the power of the test was very high (close to 1.0)

The correct answer is:

» n=140

v

v




INTRODUCTION EXAMPLE 1 THE PROBLEM AND A SOLUTION EXAMPLE 2 CONCLUSIONS
! !

POWER

v

Exercise: guess the sample size in the previous example ...

v

Hint: the power of the test was very high (close to 1.0)
The correct answer is:

n =40

The high power is due to the very large loadings

v

v

v
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POWER

v

Exercise: guess the sample size in the previous example ...

v

Hint: the power of the test was very high (close to 1.0)
The correct answer is:

n =40

The high power is due to the very large loadings

v

v

v

v

So power does not just depend on sample size. Things are
not so simple.
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POWER

The power of the modification index test to detect a certain

misspecification (say, J) can be determined just from the value
of the MI and the EPC.

Saris, W.E., A. Satorra, & W. van der Veld (2009). Testing Structural Equation

Models or Detection of Misspecifications?, Structural Equation Modeling, 16 pp.
561-582.
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» The program Jrule for Mplus (Oberski 2010) helps you
make decisions about misspecifications

» It reads in your Mplus output file and gives information
about MI, EPC, the power of the MI test, and the
recommended decision based on your own criteria
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» The program Jrule for Mplus (Oberski 2010) helps you
make decisions about misspecifications

» It reads in your Mplus output file and gives information
about MI, EPC, the power of the MI test, and the
recommended decision based on your own criteria

» It can be downloaded for free from
http://wiki.github.com/daob/JruleMplus/


http://wiki.github.com/daob/JruleMplus/
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-
&)~ ~ Jrule for Mplus beta

File Edit Tools Help |
Qutput file to read:

vote,out |l |

Parameters and misspecifications lMisspecification plots l Change decision rules l

Filter by parameter Filter by decision Filter by group
Parameter o |Deciswon 1 |Group 1 |I'~‘II 1 |EPC 1 |Power 1 |NCP 1
GEMNE1 Mot misspecified (EPC < delta) 1 4,589 0.029 1.000 54.566
GENEZ2 Mot misspecified (EPC < delta) 1 4.589 0.029 1.000 54.566

Naot ( ) . 1.000
IRG1144 WITHIRG1143 Mot misspecified (EPC < delta)
IRG1218 WITHIRG1143 Mot misspecified (EPC < delta)
IRGL218 WITHIRG1144 Mot misspecified (EPC < delta)

4.589 0.026 1.000 67.885

4.589 0.026 1.000 67.885

17.802 -0.052 1.000 65.836

IRG1219 WITHIRG1143 Mot misspecified (EPC < dela)
IRG1219 WITHIRG1144 Nok misspecified (EPC < delta)
IRG1219 WITHIRG1218 Mok misspecified (EPC < delta)

17.802 -0.051 1.000 68,443

4.589 0.027 1.000 62,949

4.589 0.027 1.000 62,949

LThe current output file is 'Z:\h l\Presentations| Jrule\ld-1Fac.out’, >
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EXAMPLE 2: PERSONALITY TRAITS AND VOTING

» “Big Five” personality traits: Openness,
Conscientiousness, Extraversion, Agreeableness, and
Neuroticism

» Correlated with voting
» Hypothesized to affect voting only indirectly, through

as

things like “a sense that voting is a duty”, “political
efficacy” (Gallego & Oberski, frth)
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Openness efficacy

Vote in

< EU elections
Conscien- Sense of /

tiousness duty

(all regression equations are also controlled for age, sex, and education -- not shown)
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HIGHLY SIMPLIFIED PATH MODEL

Extraversion

Openness Po!itical
efficacy
Vote in
< EU elections
Conscien- Sense of /
tiousness duty

(all regression equations are also controlled for age, sex, and education -- not shown)

Should we introduce a path from
Openness/Conscientiousness/Extraversion directly to Voting?
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HIGHLY SIMPLIFIED PATH MODEL

Extraversion

Openness Po!itical
efficacy
Vote in
< EU elections
Conscien- Sense of /
tiousness duty

(all regression equations are also controlled for age, sex, and education -- not shown)

Should we introduce a path from
Openness/Conscientiousness/Extraversion directly to Voting?

I will conclude we should if the effect is bigger than 0.05.
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Vote in
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duty

(all regression equations are also controlled for age, sex, and education -- not shown)
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Extraversion

Openness Political
P efficacy

Vote in
Conscien-
tiousness

EU elections
Sense of /
duty

(all regression equations are also controlled for age, sex, and education -- not shown)
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THE MEDIATION MODEL ESTIMATED WITH MPLUS

CONCLUSIONS

» Chisquare: 12.3, df = 47,
p = 0.0152

Extraversion

Openness ——— :f?:z::cayl

Vote in
Conscien-
tiousness

EU elections
Sense of /
duty

(all regression equations are also controlled for age, sex, and education -- not shown)
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p = 0.0152
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(all regression equations are also controlled for age, sex, and education -- not shown)




INTRODUCTION
!

EXAMPLE 1 THE PROBLEM AND A SOLUTION

EXAMPLE 2
THE MEDIATION MODEL ESTIMATED WITH MPLUS

CONCLUSIONS

» Chisquare: 12.3, df = 4",
p = 0.0152
» CFI: 0.965
Extraversion
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duty

(all regression equations are also controlled for age, sex, and education -- not shown)
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THE MEDIATION MODEL ESTIMATED WITH MPLUS

» Chisquare: 12.3, df = 4",
p = 0.0152
» CFI: 0.965
» TLI: 0.948
(Opemess %Ey\ Voton » RMSEA: 0.026
Conscien-

EU elections
Sense of /

tiousness duty

Extraversion

Political

(all regression equations are also controlled for age, sex, and education -- not shown)
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CFL: 0.965
TLI: 0.948
RMSEA: 0.026
WRMR: 0.885



INTRODUCTION EXAMPLE 1

THE PROBLEM AND A SOLUTION EXAMPLE 2

CONCLUSIONS

THE MEDIATION MODEL ESTIMATED WITH MPLUS

Extraversion

Openness ——— Po!itical
efficacy
Vote in
< EU elections
Conscien- Sense of/
tiousness duty

(all regression equations are also controlled for age, sex, and education -- not shown)

» Chisquare: 12.3, df = 4",

v

v

v

v
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p = 0.0152
CFL: 0.965
TLI: 0.948
RMSEA: 0.026
WRMR: 0.885

MTI’s and EPC’s:
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» Chisquare: 12.3, df = 4",
p = 0.0152

CFI: 0.965
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Extraversion
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Openness ——— .
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EU elections
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(all regression equations are also controlled for age, sex, and education -- not shown)

» MI’s and EPC’s:
VOTE ON CONS MI: 1.349 , EPC: 0.062
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THE MEDIATION MODEL ESTIMATED WITH MPLUS

» Chisquare: 12.3, df = 4",
p = 0.0152

CFI: 0.965
TLI: 0.948
RMSEA: 0.026
WRMR: 0.885

v

Extraversion

v

Political
efficacy

Vote in
EU elections
Conscien- Sense of/

tiousness duty

Openness ——

v

v

(all regression equations are also controlled for age, sex, and education -- not shown)

» MI’s and EPC’s:

VOTE ON CONS MI: 1.349 , EPC: 0.062
VOTE ON EXTR MI: 7.259**, EPC: 0.072
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THE MEDIATION MODEL ESTIMATED WITH MPLUS

» Chisquare: 12.3, df = 4",
p = 0.0152

CFI: 0.965

v

Extraversion

Political > TLI: 0.948
Openness ——— .
( " “<y ote i » RMSEA: 0.026
EU elections
Conscien- chense of/ » WRMR: 0.885
tiousness uty

(all regression equations are also controlled for age, sex, and education -- not shown)

» MI’s and EPC’s:

VOTE ON CONS MI: 1.349 , EPC: 0.062
VOTE ON EXTR MI: 7.259**, EPC: 0.072
VOTE ON OPEN MI: 1.349 , EPC: -0.041

*df calculated for model with categorical variables (WLSMV estimator)
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» So it seems our hypothesis that personality traits affect
voting only indirectly is not rejected.
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CONCLUSIONS

» The model seems to fit well, except for the regression
parameter “VOTE ON Extraversion”.

» So it seems our hypothesis that personality traits affect
voting only indirectly is not rejected.

» Hooray?
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INTRODUCTION EXAMPLE 1 THE PROBLEM AND A SOLUTION
r il I
&= ~ ~ Jrule for Mplus beta
File Edit Tools Help
Qutput file to read:
| voke.out | |;:|

Parameters and misspecifications l Misspecification plots l Change decision rules l
Filter by decision

=i =] =l

Filter by parameter Filter by group

VOTEEU03 O

Parameter 1 |Decision 1 |Group 1 |I'\"II 1 |EPC 1 |Power 1 |NCP 1
VOTEEUDS OM OPEN Inconclusive 1 1.419 -0.025 0.479 3.633
VOTEEUDS ON EXTR Misspecified (EPC >= delta) 1 7.259 0.040 0.769 7.259

1 1.349 0.043 0.191 1.167

N

VOTEEUDS ON CONS Inconclusive

Sy~ Ty TS i St Joopae B g
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respectively)
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design



INTRODUCTION EXAMPLE 1 THE PROBLEM AND A SOLUTION EXAMPLE 2 CONCLUSIONS
! !

CONCLUSIONS

» The power to detect a misspecification for Openness and
Conscientiousness is very low (0.479 and 0.191
respectively)

v

Guess the sample size. ..

v

n = 3121 (you probably saw that coming)

v

The low power is due to small effects and the sampling
design

v

The results on the possible presence of direct effects on
voting from Openness and Conscientiousness can only be
called inconclusive
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CONCLUSIONS

The power to detect a misspecification for Openness and
Conscientiousness is very low (0.479 and 0.191
respectively)

Guess the sample size. ..
n = 3121 (you probably saw that coming)

The low power is due to small effects and the sampling
design

The results on the possible presence of direct effects on
voting from Openness and Conscientiousness can only be
called inconclusive

This means we need better measures or a better model or a
bigger sample or a combination



INTRODUCTION
!

EXAMPLE 1

THE PROBLEM AND A SOLUTION

EXAMPLE 2
OVERALL CONCLUSIONS

CONCLUSIONS

» Chi square, fit measures, and MI are all affected by the
power of the test




INTRODUCTION EXAMPLE 1 THE PROBLEM AND A SOLUTION EXAMPLE 2 CONCLUSIONS
! !

OVERALL CONCLUSIONS

» Chi square, fit measures, and MI are all affected by the
power of the test

» The power is not only a function of the sample size but can
surprise you



INTRODUCTION EXAMPLE 1 THE PROBLEM AND A SOLUTION EXAMPLE 2 CONCLUSIONS
! !

OVERALL CONCLUSIONS

» Chi square, fit measures, and MI are all affected by the
power of the test

» The power is not only a function of the sample size but can
surprise you

» To make a correct decision, one must take into account the
power of the test
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OVERALL CONCLUSIONS

v

Chi square, fit measures, and MI are all affected by the
power of the test

v

The power is not only a function of the sample size but can
surprise you

To make a correct decision, one must take into account the
power of the test

v

v

Saris & a. (2009) suggest one method for doing this
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OVERALL CONCLUSIONS

» Chi square, fit measures, and MI are all affected by the
power of the test

» The power is not only a function of the sample size but can
surprise you

» To make a correct decision, one must take into account the
power of the test

» Saris & a. (2009) suggest one method for doing this

» That method is implemented in the free software Jrule for
Mplus (Oberski 2010)
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Thank you very much for your attention!
http://wiki.github.com/daob/JruleMplus/

daniel.oberski@upf.edu

This presentation: http://daocb.org/
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