
Introduction to automated image 
processing using macros in Fiji  

 

Center for Microscopy and Image Analysis 
University of Zurich 

2019





 

This script was written as a short summary for the users of Center for Microscopy and Image Analysis, 
University of Zurich, Switzerland. 

April 2019, Dominik Hänni and Joana Delgado Martins. 

This script was written using Fiji, ImageJ 1.52i.





5 

 

Contents 
 

1. ABBREVIATIONS AND CONCEPTS ________________________________________________ 6 

2. REMARKS _______________________________________________________________ 6 

3. SOFTWARE: FIJI ___________________________________________________________ 6 

4. PLUGINS AND UPDATING _____________________________________________________ 6 

5. MACROS ________________________________________________________________ 7 

6. SCRIPTING AND SUPPORTED LANGUAGES __________________________________________ 9 

7. COMMENTING ___________________________________________________________ 10 

8. RUN SELECTED CODE _______________________________________________________ 11 

9. SAVING YOUR IMAGE ______________________________________________________ 11 

10. ADDING A SCALE BAR AND SAVING A SECOND IMAGE _________________________________ 12 

11. VARIABLES, ADDING FLEXIBILITY TO YOUR MACRO ___________________________________ 12 

12. BUILT IN FUNCTIONS _______________________________________________________ 13 

13. STRING MANIPULATION AND FILENAMES _________________________________________ 14 

14. ITERATE OVER A FOLDER ____________________________________________________ 14 

FOR LOOPS _____________________________________________________________________ 15 

15. BATCH MODE ___________________________________________________________ 16 

16. RUNNING THE TEMPLATE MACRO ______________________________________________ 16 

17. LITERATURE AND FURTHER INFORMATION_________________________________________ 19 

  



6 

1. Abbreviations and Concepts 

ImageJ Macro: a script that automates a series of ImageJ commands and also allows for variables, 
control flow, etc. 

2. Remarks 

This script was written for practical training purposes by the Center for Microscopy and Image Analysis, 
University of Zurich. Theory is kept to a minimum.  

The script should be used as a guideline for hands-on training. 

Highlighting styles used in this script: 

File names are set in green (e.g. Cell_Division_Pinhole_0_5AU_Nyquist_7386.lif) 

  
Practical steps are set in italic. Keyboard shortcurts here 

Macro code:  run("Enhance Contrast", "saturated=0.35"); 

Or screenshots of the ImageJ macro editor.  

3. Software: Fiji  

This script gives a basic introduction to scientific image processing. All exercises can be done using 
ImageJ or Fiji which is just a version of ImageJ supplemented with many useful plugins. It can be 
downloaded for free from 

https://fiji.sc/ 

Downloadable distributions are available for Windows, Mac OS X and Linux. It 
can read many image and microscope formats including TIFF, GIF, JPEG, BMP, 
DICOM, FITS, IMS, LIF, CZI, ‘raw’.  

Install your own copy of FiJi and selected plugins in your home folder if you 
are using the virtual machines available to the users of the Center of 
Microscopy and Image Analysis. Otherwise save it locally in your computer.  

4. Plugins and Updating 

When installing FiJi from the Downloads page, the latest stable version is available. However FiJi and 
its various plugins are frequently updated so you should check if you have the latest updates through 

  
Help>Update 

Here you can also manage the update sites and install additional useful plugins which are not installed 
by default.  

https://fiji.sc/


7 

5. Macros 

Fiji macros are very useful tools not only to automatize repetitive tasks, but also to standardize and 
document your image processing efforts.  

You can easily start recording the commands used in your image processing through the macro 
recorder 

  
Plugins>Macro>Record… 

 

  
Open an image from the provided folder for this training session.  

Image1_Widefield_Actin.tif.  

Create a copy and rename your image through 

  
Image>Duplicate Ctrl+Shift+ D 

Choose a LUT of your choice for the selected image through  

  
Image>Lookup tables 

You will notice that each operation is being recorded in the macro recorder.  

 

 



8 

  
Adjust the brightness and contrast of you channels accordingly by using the “Set” button 
  
Select Image>Adjust>Brightness/Contrast  Ctrl+ Shift+C 

 

//run("Brightness/Contrast..."); 

setMinAndMax(230, 10000); 

  
You can also automatically set these values by choosing “Auto”. In this case the following 
command will appear 

run("Enhance Contrast", "saturated=0.35"); 

  
You can now create your own macro by pressing “Create” on the recorder window. 

 

 



9 

 

6. Scripting and Supported Languages 

A scripting language is a programming language used to control another software such as a runtime 
environment or in this case ImageJ. Usually scripting languages are interpreted and not compiled. We 
will be using ImageJ Macro language (IJM) which is designed to be easy to read, learn and use. 
Programs written in the IJM, or macros, can be used to perform a sequence of actions in ImageJ. 

ImageJ also supports several other scripting languages. To find more you can check here 
https://imagej.net/Scripting. 

Like other programming languages, the IJM has basic structures that can be used for expressing 
algorithms. Those include variables, control structures (e.g. looping statements) and user-defined 
functions. In addition, the IJM provides access to the ImageJ functions available from the graphical 
user interface menu commands and to a large number of built-in functions aimed at working with the 
different data structures used in ImageJ (images and image windows, regions of interest, the results 
table, plots, image overlays, etc.). 

Remark: Not all but most ImageJ plugins are scriptable. Only if the developer of a specific plugin 
included the scripting functionality properly it can be seen in the macro editor and used in your code.  

In your macro editor, save your macro 

  
File>Save As 

You will realize that your text will appear formatted in a specific way (Syntax highlighting): 

https://imagej.net/Scripting


10 

 

Commands will automatically 
appear in brown,  

“text in magenta between 
inverted commas”,  

values in blue and  

comments in green.  

All commands end with ; 

You can check other available 
scripting languages under the 

menu Language. Select IJ1 Macro Language in case your macro is shown in plain text. 

At this point you probably also recorded unnecessary operations and mistakes.  

  
You should now remove unnecessary operations from your code.  

 

  
Now try to open the image  
Image2_Widefield_Actin.tif 
and apply the same settings using your recorded macro by pressing “Run”. 

7. Commenting 

It is essential not only for you but also for your successors that you correctly document your macro. 
Also include a header where you write 

• who programmed the macro (also include a contact email) 
• when 
• where 
• for what purpose 
• assumptions, known limitations, data requirements, data preprocessing, needed plugins 
• other useful information for running the macro 

This will be helpful not only when you need to share the code with other colleagues, but also for your 
own recollection. 

To add text that is only intended to be used for commenting your macro you can either include  

//  At the beginning of the line  

Or  



11 

/* 
 *  
 */  

For multiple lines (once you’ve written /* and press Enter in your macro editor it will automatically fill 
the following 2 lines. You only need to write in front of the * and press Enter for a new line.  

 

8. Run Selected Code 

When debugging/optimizing your macro you might find it useful to run only selected parts of your code 
rather than the whole macro. You can do this in your macro editor through 

  
Run>Run selected code Ctrl+Shift+R 

 

 

9. Saving your Image 

  
Save your image as a tif file. 



12 

 

You will realize that in the recorder the exact path will be given.  

10. Adding a Scale Bar and Saving a Second Image  

Record the commands for the following steps and add them to your macro: 

  
Convert into RGB 

  
Add a scale bar through 
Analyze>Tools>Scale Bar... 

  
Save the second image with a different name. 

11. Variables, adding Flexibility to your Macro  

You would now love to apply this macro to a whole folder and save the corresponding images in an 
output folder. But how? 

The command recorder writes down exactly what you do, including the names of the images you use 
as well as the absolute paths. To use a more general macro on more than one image, specific names 
must be replaced with either generic names or variables. You can store your filenames as variables 
that can be later called in the macro and used for other operations.  

The ImageJ macro language is typeless. Variables do not need to be declared and do not have explicit 
data types. They are automatically initialized when used in an assignment statement. A variable can 
contain a number, a boolean, a string or an array. Numbers are stored in 64-bit double-precision 
floating point format. Booleans are represented by the numbers 0 and 1. The same variable can be any 
of these things at different times. 

Strings are important variables to work with in the ImageJ macro language. They are used to handle 
file names and file paths, window titles and user interaction messages, but also to feed arguments to 
built-in commands. 

Variable names are case-sensitive. "Name" and "name" are different variables.  

  
Store and print a variable “testvariable” with your text of choice.  

 



13 

 

This will be shown in the Log window. 

 

  
Store a variable “testvariable2” with a different text. Print it. 

Be careful when assigning variables as you might overwrite previously defined ones. Choose 
informative variable names and a coherent naming scheme that you can easily identify or debug later 
on. 

12. Built in Functions 

Besides the commands recorded in the macro recorder ImageJ also has many useful built in functions 
such as  

getTitle(); 

This function allows you to access the name of your image. 

  
Store a variable “image” which contains your image title by adding 
 

  
  

As the output of such instructions is not always visible you can use the command print so you 
can easily keep track. This will be shown in the Log window. 
 

 

You can also print variables and additional text by using the + sign as you can see in the example. 
Remember your text must be between “ ”. You will easily recognize this due to its different syntax 
highlight (magenta). 



14 

 

You will also find many useful built in functions in 

https://imagej.nih.gov/ij/developer/macro/functions.html 

13. String Manipulation and Filenames 

Additionally you can change your string such as “image” by using different in-built functions:  

indexOf(string,substring) 
Returns the index within string of the first occurrence of substring. 

substring(string,index1,index2) 
Returns a new string that is a substring of string. The substring begins at index1 and extends to the 
character at index2 - 1. 

replace(string,old,new) 
Returns the new string that results from replacing all occurrences of old in string with new, 
where old and new are single character strings.  

toString(number) 
Returns a decimal string representation of number. 

Very often it is necessary to deal with filenames using the following functions: 

File.getName(path) 

Returns the last name in path's name sequence. 

File.getParent(path) 

Returns the parent of the file specified by path. 

  
  

Use replace(string, old, new) to change string image containing your file name  
 

 
 

14. Iterate over a Folder 

  
Close the macro recorder. 

https://imagej.nih.gov/ij/developer/macro/functions.html


15 

Drag & Drop the file IterateOverFolder_template_empty_ZMB_201904.ijm 

  
Take a look at the comments and structure of the template. 

 

Using additional built in functions will help you get the path for your input and output folders. 

 

The variable “list” will be used to store all the file names inside the input directory: 

  

For loops 

In order to go through all the files contained in your folder we will need to create an iteration loop. 
Looping statements are used to repeatedly execute a block of code.  

Remark: Be careful that you only have the images you want to process in your folder. Otherwise you 
need to include additional code which instructs ImageJ regarding the types of files that will be used. 

The ImageJ macro language has several loop statements for controlling the flow of the processing. In 
this case we will set up a for loop. 

The for statement has the form:  
 
   for (initialization; condition; increment) { 
      statement(s) 
   } 
 

You will find this structure in the template: 



16 

 

By adding .length to your “list”-variable the for loop knows how many times to iterate (the length of 
your file list). Alternatively you could manually select how many files you wish to process by placing a 
number instead of list.length.  

15. Batch Mode 

If you do not need to visualize each image as it is being processed you can  

  
Set Batch mode to true. 

 

The batch mode allows processing of a macro without displaying the images on the screen. This 
improves the performance of your macro dramatically and keeps your screen clean. 

If you are running your macro in batch mode, print commands to the console will be particularly helpful 
to follow what is going on and to debug your code. 

As good practice always set Batch Mode to false again  

at the end of your macro.  

16. Running the Template Macro 

You can now try to apply your instructions (do not include the save options) to a test input folder.  

  
Try applying the same B&C settings to all the images inside the folder by copying your code 
into the section 

 

 



17 

  
Run the macro. 

You will be asked to choose and input folder and an output folder.  

 

After you choose your origin and destination folders the macro will store this paths and try to open 
the files inside.  

In the Log window you will be able to see how many files your input folder contains.  

 

 

  
How would you proceed if you would like to save two images? 
One with and one without the scale bar? 

 

Open the macro IterateOverFolder_B&C_scale_2images_ZMB_201904.ijm 

In this example, after the B&C settings are adjusted the image is duplicated.  

The name of the second image is stored under “title2”. 



18 

To save each image the command selectWindow() allows selection of the appropriate window.  

 

 

  



19 

17. Literature and Further Information 

• Image J Macro language 

o https://imagej.nih.gov/ij/developer/macro/macros.html 

• Introduction to Macro Programming 

o https://imagej.net/Introduction_into_Macro_Programming 

• The ImageJ Built-in Macro Functions 

o https://imagej.nih.gov/ij/developer/macro/functions.html 

• You will also find various forums and channels where you can place your questions and find 

solutions. 

o https://imagej.net/Help 

 

https://imagej.nih.gov/ij/developer/macro/macros.html
https://imagej.net/Introduction_into_Macro_Programming
https://imagej.nih.gov/ij/developer/macro/functions.html
https://imagej.net/Help

	1. Abbreviations and Concepts
	2. Remarks
	3. Software: Fiji
	4. Plugins and Updating
	5. Macros
	6. Scripting and Supported Languages
	7. Commenting
	8. Run Selected Code
	9. Saving your Image
	10. Adding a Scale Bar and Saving a Second Image
	11. Variables, adding Flexibility to your Macro
	12. Built in Functions
	13. String Manipulation and Filenames
	14. Iterate over a Folder
	For loops

	15. Batch Mode
	16. Running the Template Macro
	17. Literature and Further Information

