The human brain resting state networks based on high time resolution EEG

R.D. Pascual-Marqui$_{1,2}$, D. Lehmann$_1$, M. Koukkou$_1$, M. Esslen$_3$, K. Nishida$_2$, M. Yoshimura$_2$, N. Saito$_4$, R. John$_5$, L. Prichep$_5$, P. Anderer$_6$, K. Kochi$_1$, T. Kinoshita$_2$

1: The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich
2: Department of Neuropsychiatry, Kansai Medical University Hospital, Osaka
3: Institute of Psychology, University of Zurich, Zurich
4:
5: Brain Research Laboratories, New York University School of Medicine, New York
6: Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna
Part 1: Introduction
Part 2: Tutorial on using software
Part 1: Introduction
What is neuroimaging?

99% of the time
(example)

- Measure BOLD signals in two groups of subjects

- At each voxel in the brain, compare the BOLD signals by computing a t-test (millions of t-tests, one for each voxel)

- Set an appropriate threshold (correct for multiple tests), and report significant voxels (hot-spots or cold-spots)
Example: comparing Schizophrenic patients with normal control subjects
Volume rendering of between-group contrasts where relative increased activity for healthy subjects is presented in red-yellow (DLPFC; BA9) and relative increased activity for patients with schizophrenia is shown in purple-pink (anterior cingulate; BA32). Although patients with schizophrenia engaged the DLPFC less than comparison subjects, they overactivated a portion of the anterior cingulate. Evidence of reduced DLPFC activation and increased activity in the anterior cingulate may be consistent with the notion that schizophrenia disrupts or reverses the normal functional connectivity of prefrontal and limbic structures.

Hypometabolism in schizophrenia: is it localized only here???
There is nothing wrong with classical neuroimaging

However, it gives very limited information

Can behavioral disorders, therapy effects, or cognition be assigned to some few hot-spots in the brain?

NO
Alternative approach: from hot-spots to distributions (networks)

Different parts of the brain work in a certain relationship to each other

Break the relations, and you have an emergent behavioral disorder
What is the “resting state”?

- Wakeful rest
- Mind-wandering
- Spontaneous thoughts
- Daydreaming
- Retrieving memories
- Stimulus independent thoughts
- Absence of goal-directed neuronal action and external input

- REST = Random Episodic Spontaneous Thoughts

- EEG: resting, eyes closed, awake
What is the “resting state”?

Resting brain ≠ Inactive brain

The Brain’s Dark Energy

Marcus E. Raichle

NEUROSCIENCE

it is estimated that 60 to 80% of the energy budget of the brain supports communication among neurons and their supporting cells (2). The additional energy burden associated with momentary demands of the environment may be as little as 0.5 to 1.0% of the total energy budget (2).
The resting state is important

It is the dynamic substrate of the “present”, momentary state of the brain, and determines the fate of incoming information.
Resting state, first observations: EEG, Hans Berger, 1929
Resting state, first observations: EEG, Hans Berger, 1929

Rest (eyes closed)
Resting state, first observations: EEG, Hans Berger, 1929

Eyes-open
What are “resting state networks (RSN)”?

New definition (less than 10 years old), old ideas

First famous network: “default mode”, but it is just one of the many “resting state networks”

Default mode network (DMN): a set of brain regions that are jointly active during rest, and that jointly deactivate in any task.
Default mode network example

The Restless Brain

Marcus E. Raichle
Default Mode Network example
What are “resting state networks”?

A network is composed of a group of brain regions, with “correlated” time varying activities.
Default Mode network example

A

~1 minute/row

B

% BOLD Fluctuations

Time (seconds)

D

Default Mode

Executive Control

Visual

Salience

Sensorimotor

Dorsal Attention

Auditory

© 2021 The Authors.

DOI: 10.1016/j.neuron.2021.05.013
All signals from regions belonging to one network are “similar”, i.e. correlated.
What are “resting state networks”?

A network is composed of a group of brain regions, with “correlated” time varying activities.

Different networks work independently of each other.
Signals from different networks are independent, not correlated.
Default mode network example
Resting state networks

Most of the recent literature, based on fMRI experiments, use many different methods of analysis such as ICA (independent components analysis), correlation analysis, clustering techniques, all with converging results.
A baseline for the multivariate comparison of resting-state networks

Elena A. Allen¹*, Erik B. Erhardt¹, Eswar Damaraju¹, William Gruner¹,², Judith M. Segall¹,³, Rogers F. Silva¹,², Martin Havlicek¹,², Srinivas Rachakonda¹, Jill Fries¹, Ravi Kalyanam¹,², Andrew M. Michael¹, Arvind Caprihan¹, Jessica A. Turner¹,⁴, Tom Eichele⁵, Steven Adelsheim⁶, Angela D. Bryan¹,⁶,⁷, Juan Bustillo⁴,⁸, Vincent P. Clark¹,⁶,⁸, Sarah W. Feldstein Ewing¹, Francesca Filbey¹,⁹, Corey C. Ford¹⁰, Kent Hutchison¹,⁶,⁸, Rex E. Jung¹,¹¹, Kent A. Kiehl¹,⁶,⁸, Piyadasa Kodituwakku¹², Yuko M. Komesu¹³, Andrew R. Mayer¹,¹⁰, Godfrey D. Pearson¹⁴,¹⁵,¹⁶, John P. Phillips¹,¹⁰, Joseph R. Sadek¹,¹⁷, Michael Stevens¹⁴,¹⁵, Ursina Teuscher¹,⁶, Robert J. Thoma¹,⁴,⁶ and Vince D. Calhoun¹,²,⁴,⁸,¹⁵

¹ The Mind Research Network, Albuquerque, NM, USA
² Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
³ Department of Family and Community Medicine, University of New Mexico, Albuquerque, NM, USA
⁴ Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
⁵ Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
⁶ Department of Psychology, University of New Mexico, Albuquerque, NM, USA
⁷ Center on Alcoholism Substance Abuse and Addiction, University of New Mexico, Albuquerque, NM, USA
⁸ Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA
⁹ Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
¹⁰ Department of Neurology, University of New Mexico, Albuquerque, NM, USA
¹¹ Department of Neurosurgery, University of New Mexico, Albuquerque, NM, USA
¹² Center for Development and Disability, University of New Mexico, Albuquerque, NM, USA
¹³ Department Obstetrics and Gynecology, University of New Mexico, Albuquerque, NM, USA
¹⁴ Olin Neuropsychiatry Research Center, The Institute of Living, Hartford, CT, USA
¹⁵ Department of Psychiatry, Yale University, New Haven, CT, USA
¹⁶ Department of Neurobiology, Yale University, New Haven, CT, USA
¹⁷ Behavioral Health Care Line, New Mexico VA Health Care System, Albuquerque, NM, USA
The resting state is important

It is the dynamic substrate of the “present”, momentary state of the brain, and determines the fate of incoming information.

During rest, the brain goes through all working modes: sensory, attention, executive control, language, ... and rest.

E.g.: Attention deficit = abnormal attention network, decreased time, weak interconnections, ...
Intracranial electric neuronal activity
Intracranial electric neuronal activity
Intracranial electric neuronal activity

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>-47.5</td>
<td>-69</td>
<td>-2.5</td>
<td>IMT+</td>
</tr>
<tr>
<td>47.5</td>
<td>-69</td>
<td>-2.5</td>
<td>rMT+</td>
</tr>
<tr>
<td>-26</td>
<td>-8</td>
<td>50</td>
<td>IFEF</td>
</tr>
<tr>
<td>26</td>
<td>-8</td>
<td>50</td>
<td>rFEF</td>
</tr>
<tr>
<td>-25.5</td>
<td>-54</td>
<td>56</td>
<td>ISPL</td>
</tr>
<tr>
<td>25.5</td>
<td>-54</td>
<td>56</td>
<td>rSPL</td>
</tr>
<tr>
<td>-35</td>
<td>54.5</td>
<td>9.5</td>
<td>laPFC</td>
</tr>
<tr>
<td>35</td>
<td>54.5</td>
<td>9.5</td>
<td>raPFC</td>
</tr>
<tr>
<td>-48</td>
<td>17</td>
<td>38.5</td>
<td>ldIPFC</td>
</tr>
<tr>
<td>48</td>
<td>17</td>
<td>38.5</td>
<td>rdIPFC</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>27</td>
<td>aCC</td>
</tr>
<tr>
<td>-52</td>
<td>-47.5</td>
<td>47</td>
<td>laIPL</td>
</tr>
<tr>
<td>52</td>
<td>-47.5</td>
<td>46</td>
<td>raIPL</td>
</tr>
<tr>
<td>-31</td>
<td>21</td>
<td>-1</td>
<td>laINS</td>
</tr>
<tr>
<td>31</td>
<td>22</td>
<td>-2</td>
<td>raINS</td>
</tr>
<tr>
<td>-22.5</td>
<td>-22</td>
<td>-17.5</td>
<td>IHF</td>
</tr>
<tr>
<td>22.5</td>
<td>-22</td>
<td>-17.5</td>
<td>rHIF</td>
</tr>
<tr>
<td>0</td>
<td>51</td>
<td>-7</td>
<td>vmPFC</td>
</tr>
<tr>
<td>1</td>
<td>-55</td>
<td>17</td>
<td>pCC</td>
</tr>
<tr>
<td>-48.5</td>
<td>-67.5</td>
<td>28</td>
<td>lplpl</td>
</tr>
<tr>
<td>48.5</td>
<td>-67.5</td>
<td>28</td>
<td>rplpl</td>
</tr>
<tr>
<td>2</td>
<td>-92</td>
<td>-6</td>
<td>Vis</td>
</tr>
<tr>
<td>-55</td>
<td>-25</td>
<td>10</td>
<td>lAud</td>
</tr>
<tr>
<td>55</td>
<td>-25</td>
<td>10</td>
<td>rAud</td>
</tr>
</tbody>
</table>

Diagram:

- **Two regions, same network**
- **Two regions, independent**
In words, the procedure for the discovery of brain networks (intuitive, exploratory method):

1. Stick needles into the brain, cover the whole cortex (non-invasively, virtual electrodes, LORETA).
2. Take each distinct pair of intracranial electrodes, and compute the “similarity” between the signals.
3. If two signals are very similar, i.e. highly correlated – coherent – synchronized, then assign them into the same network.
4. If two signals are very dissimilar, make sure they belong to different network.
5. Scan all distinct pairs of intracranial signals.
Exploratory analysis using this intuitive method is not feasible

6239 cortical grey matter voxels
6239*6238/2 = 19'459'441 plots

For each EEG frequency band of interest, e.g.:
Delta: 1.5-6 Hz
Theta: 6.5-8.0 Hz
Alpha1: 8.5-10 Hz
Alpha2: 10.5-12.0 Hz
Beta1: 12.5-18.0 Hz
Beta2: 18.5-21.0 Hz
Beta3: 21.5-30.0 Hz

At least 40 seconds of EEG
ICA (independent components analysis)
A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data

Vince D. Calhouna,b,*, Jingyu Liua,b, and Tülay Adalic

\[X = AS \]
ICA (independent components analysis)

If brain activity is organized and structured in such a way that there are several different groupings (networks) of regions, where within a group (network) all activity is correlated, but between groups (networks) there is independence, then ICA should produce spatial “components” that correspond to the networks.
ICA (independent components analysis)

If brain activity is organized and structured in such a way that there are several different groupings (networks) of regions, where within a group (network) all activity is correlated, but between groups (networks) there is independence, then ICA should produce spatial “components” that correspond to the networks.

blue ↔ blue

red ↔ red
Part 2: Tutorial on using software

Run / open the main LORETA program
Open the Utilities module
Make electrode coordinates (skip if already made)
Compute transformation matrix (skip if already made)
Create frequency bands file
Compute cross-spectra (skip if already made)
Compute sLORETA (skip if already made)
Compute Brain Networks
Statistical Analysis of Resting State Networks
Run / open the LORETA software
Open the Utilities

Low Resolution Brain Electromagnetic Tomography (LORETA)

OSKA 2012 version

Zero-error forever

Functional connectivity

Functional localization
Make electrode coordinates for EEG data (skip next slides if already made!)

Alternatively, you can open the "Electrode Maker" program, using as templates the 10/20, 10/10, or 10/5% systems. Click this panel to execute the program. When you're finished, you can close it.
Make electrode coordinates for EEG data (skip next slides if already made!)
Drag and drop the text file with electrode names (List19e.txt), from the desktop folder with the example EEG data. Click “Go”. The file (List19e.sxyz) is created.
Make the transformation matrix (skip next slides if already made!)
Drag and drop the file (List19e.sxyz) with electrode coordinates, from the desktop folder with the example EEG data. Click “Go”. The file (List19e.spinv) is created.
Create a text file in the notepad with the following text:

```
7
1.5 6
6.5 8
8.5 10
10.5 12
12.5 18
18.5 21
21.5 30
```

This is a “User defined frequency band file”. You can make analysis with any bands of your interest. In this case, seven (7) bands are defined. The next seven lines have the “start” and “end” frequency, separated by space. These are the 7 classical bands, without the additional full band (1.5 30). Save this text file with name: 7bands.txt

Save to the EEG folder!
Compute the cross-spectra for vigilance controlled EEG, for old and young subjects. (skip next slides if already made!) Note every detail marked with arrows. Drag/drop “7bands.txt” to the box “File with user defined bands”
Compute the cross-spectra for vigilance controlled EEG, for old and young subjects. (skip next slides if already made!) Note every detail marked with arrows. Finally, drag/drop the 20 folders for old and 20 folders for young, vigilance controlled EEG. Note that there must be a total of 40 lines (blue arrow), indicating 40 folders. And click “Go”.
Compute sLORETA from cross-spectra (skip next slides if already made!)
First drag and drop the transformation matrix (List19e.spinv) as indicated
Compute sLORETA from cross-spectra (skip next slides if already made!)

Finally, drag and drop the folders VigCtrlEEG_Old and VigCtrlEEG_Young as indicated. These folders contain the cross-spectra. Note the “Number of lines = 40” cross-spectra. Click “Go”.

![Image of Windows Explorer window with folders and files highlighted]
Computing brain networks
Computing brain networks

The papers describing LORETA-ICA are:

Computing brain networks

In fMRI, the basic material are images of metabolic brain activity that change with time.

In EEG, the basic material are images of electric cortical activity for each frequency band (sLORETA files, with 7 images, one for each band: delta, theta, alpha1, alpha2, beta1, beta2, beta3).

An fMRI resting state network is a single static image of metabolic brain activity. The brain areas in a network activate together, but different networks do not activate together.

An sLORETA resting state network consists of many images of electric cortical activity, one for each frequency (e.g. 7 images). The “brain areas AND frequencies” in a network always activate together, but different networks do not activate together.
Select “Transposed fICA” in the “Utilities” module. Drag/drop indicated folders with sLORETA files. Select all parameters as indicated.
Double-click as indicated, and create a “New Folder” within the EEG folder (any name, e.g. “TranspFica”), and within the new folder, define a file name for the results of the ICA analysis (e.g. Tfica15). Click “Save”, then click “Go”.

Double-click to set output (save) file name (Hint: Create a new folder for output files):

C:Users\roberto\Desktop\LORETA-ExampleDataSets\ExampleEEGdata(PeterAnderer)\TranspFica\Tfica15.txt
Open the windows explorer, e.g. click as indicated. Navigate to the folder with the ICA results.
The results for the Transposed fICA analysis:
The results for the Transposed fICA analysis:

The files “Tfica15-zScoresHyperIndpndntFICs-0XX.slor” contain the resting state networks (RSNs). Run the LORETA viewer/explorer and load a file, or double-click the first file (Tfica15-zScoresHyperIndpndntFICs-001.slor), and the LORETA viewer/explorer will open automatically.
The next slide shows the preferred display layout.
Select all windows and parameters as indicated by the arrows. In the next slide.
How to interpret what you see:

1. The color scale is set to display activation only if it has a z-score higher than 3, which is significant.

2. In the “EEG/ERP signals” window, the two lower curves correspond to positive maximum, and minimum negative activation, for each frequency band (there are 7 bands along the x-axis).

3. In the previous slide, the results show maximum activation in frontal cortex for high frequency Beta3 band.

4. This is a simple case, with only one dominant frequency (Beta3). For other brain networks, if there is more than one dominant frequency, it is necessary to check each of those frequencies individually.
The next slides summarize some of the main networks
LORETA resting state network 1: Frontal Beta3
LORETA resting state network 2: (Frontal Delta AND Parietal Alpha1) anti-correlated with Occipital Alpha1
LORETA resting state network 3: Frontal Delta with Occipital Alpha1
LORETA resting state network 4: Right Frontal Beta2 anti-correlated with Left Frontal Beta3
LORETA resting state network 5: Parietal Alpha1 anti-correlated with Occipital Alpha2
LORETA resting state network 6: Occipital Alpha anti-correlated with Frontal Beta2
LORETA resting state network 9: Temporal (auditory) cortices Beta2 and Beta3
LORETA resting state network 11: Left Occipito-Parietal cortex Alpha2 to Beta3
Statistical Analysis of Resting State Networks
The previous 15 resting state networks are common to both groups of subjects (young and old normal controls). Both types of brain use the same resources (common networks).

However, it may happen that the older subjects use some networks in a different way as compared to the younger subjects.

The usage of the networks for each subject consist of the files located in the “Projections” folder:
For instance:

VEEG01_O-HyperIndpndntFICprojections.txt corresponds to old subject number 1;
VEEG01_Y-HyperIndpndntFICprojections.txt corresponds to young subject number 1;

These text files contain 15 coefficients, expressing how each network is used.
For instance, the coefficients for VEEG01_O-HyperIndpndntFlCprojections.txt are

![Coefficient Values](image)

One coefficient for each network, expressing how that subject uses that network.

Statistical analysis can be performed on these 15 numbers, comparing Old and Young groups, in search of how the old brain uses the Resting State networks differently from the young brain.

For statistical analysis, these files will be treated as ERP files, with 1 fictitious electrode and 15 fictitious time frames.
Run the Statistics module and note the arrows:
Continuing Statistics, note the arrows:
Continuing Statistics, note the arrows:
Continuing Statistics, note the arrows:

- Independent groups, test $A = B$

- Single group, zero mean test $A = 0$
- Paired groups, test $(A-A2) = (B-B2)$
- Independent groups, test $(A-A2) = (B-B2)$ [NOTE: A and A2 are paired; B and B2 are paired; but $(A,A2)$ is independent of $(B,B2)$]
- Regression, single group A vs. external independent variables
- Regression, paired contrast $(A1-A2)$ vs. external independent variables
Continuing Statistics, note the arrows:
Continuing Statistics, note the arrows:

At this point the files with the coefficients (projections) must be selected carefully, placing (drag/drop) the old subjects in list A, and the young subjects in list B. This can be achieved manually, using the left side panels. But more conveniently using the DragDropUtil (red arrow).
The filenames for old subjects include the unique characters “_O”. The search function finds these 20 files, and they are selected and drag/dropped in list A.
Continuing Statistics, note the arrows:

The filenames for young subjects include the unique characters “_Y”. The search function finds these 20 files, and they are selected and drag/dropped in list B. Now click next.
Continuing Statistics, note the arrows:
Continuing Statistics, note the arrows:

Double-click Continuing Statistics, note the arrows:

Create a New Folder, under Projections, any name OK (e.g. "ttest"), and type any name for the output file (e.g. "t"), click Save.
Finally click perform tests, and wait till finished.
Open the windows explorer, navigate to the “ttest” folder:

Open the thresholds file (it is a text file)
There is significant difference between the way the old and young subjects use the resting state networks!
The highlighted threshold value is $t=1.99$, for $p=0.02$
Open the windows explorer, navigate to the “ttest” folder:

Now open the file with the t-values (it is a text file)
The use of the resting state networks numbered 2, 6, and 11 are significantly different between old and young subjects
LORETA resting state network 2: (Frontal Delta AND Parietal Alpha1) anti-correlated with Occipital Alpha1

\(t = -2 \), invert sign: Old have reduced occipital alpha AND excess frontal delta compared to young (normal aging?)
t=+4: Old have reduced occipital alpha and excess frontal beta compared to young (normal aging, hyper-excitable frontal areas try to compensate age effect?)
t=-3.7, invert sign: Old have reduced left occipito-parietal high frequencies compared to young (normal aging, insufficiently excitable association cortex and language areas?)